Suppr超能文献

基于高分辨率夜间灯光数据的新全球人为热估算。

A new global anthropogenic heat estimation based on high-resolution nighttime light data.

机构信息

Master of science, State Key Laboratory of Earth Surface Processes and Resource Ecology, School of System Science, Beijing Normal University, Beijing, China.

Assistant Research Fellow, Institute of African Studies, Nanjing University, Nanjing 210000, China.

出版信息

Sci Data. 2017 Aug 22;4:170116. doi: 10.1038/sdata.2017.116.

Abstract

Consumption of fossil fuel resources leads to global warming and climate change. Apart from the negative impact of greenhouse gases on the climate, the increasing emission of anthropogenic heat from energy consumption also brings significant impacts on urban ecosystems and the surface energy balance. The objective of this work is to develop a new method of estimating the global anthropogenic heat budget and validate it on the global scale with a high precision and resolution dataset. A statistical algorithm was applied to estimate the annual mean anthropogenic heat (AH-DMSP) from 1992 to 2010 at 1×1 km spatial resolution for the entire planet. AH-DMSP was validated for both provincial and city scales, and results indicate that our dataset performs well at both scales. Compared with other global anthropogenic heat datasets, the AH-DMSP has a higher precision and finer spatial distribution. Although there are some limitations, the AH-DMSP could provide reliable, multi-scale anthropogenic heat information, which could be used for further research on regional or global climate change and urban ecosystems.

摘要

化石燃料资源的消耗导致了全球变暖与气候变化。除了温室气体对气候的负面影响外,能源消耗所产生的人为热量排放也对城市生态系统和地表能量平衡带来了显著影响。本研究旨在开发一种新的方法来估算全球人为热量预算,并利用高精度、高分辨率数据集对其进行全球范围的验证。我们采用了一种统计算法,来估算 1992 年至 2010 年期间全球 1×1km 空间分辨率的年平均人为热量(AH-DMSP)。我们对省级和市级尺度的 AH-DMSP 进行了验证,结果表明,该数据集在这两个尺度上表现良好。与其他全球人为热量数据集相比,AH-DMSP 具有更高的精度和更精细的空间分布。尽管存在一些局限性,但 AH-DMSP 可以提供可靠的、多尺度的人为热量信息,可用于进一步研究区域或全球气候变化和城市生态系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06fc/5667572/79eb8590cb51/sdata2017116-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验