Department of Chemistry and Biochemistry, University of California, Los Angeles , Los Angeles, California 90095, United States.
Molecular Biology Institute, University of California, Los Angeles , Los Angeles, California 90095, United States.
J Phys Chem B. 2017 Aug 31;121(34):8149-8154. doi: 10.1021/acs.jpcb.7b07232. Epub 2017 Aug 22.
Bacterial microcompartments are giant protein-based organelles that encapsulate special metabolic pathways in diverse bacteria. Structural and genetic studies indicate that metabolic substrates enter these microcompartments by passing through the central pores in hexameric assemblies of shell proteins. Limiting the escape of toxic metabolic intermediates created inside the microcompartments would confer a selective advantage for the host organism. Here, we report the first molecular dynamics (MD) simulation studies to analyze small-molecule transport across a microcompartment shell. PduA is a major shell protein in a bacterial microcompartment that metabolizes 1,2-propanediol via a toxic aldehyde intermediate, propionaldehyde. Using both metadynamics and replica-exchange umbrella sampling, we find that the pore of the PduA hexamer has a lower energy barrier for passage of the propanediol substrate compared to the toxic propionaldehyde generated within the microcompartment. The energetic effect is consistent with a lower capacity of a serine side chain, which protrudes into the pore at a point of constriction, to form hydrogen bonds with propionaldehyde relative to the more freely permeable propanediol. The results highlight the importance of molecular diffusion and transport in a new biological context.
细菌微室是一种巨大的蛋白质基细胞器,可将各种细菌中的特殊代谢途径包裹起来。结构和遗传研究表明,代谢底物通过六聚体壳蛋白的中心孔进入这些微室。限制在微室内部产生的有毒代谢中间体的逸出,将为宿主生物体带来选择性优势。在这里,我们报告了首次使用分子动力学(MD)模拟研究来分析小分子穿过微室壳的传输。PduA 是细菌微室中的主要壳蛋白,可通过有毒醛中间产物丙醛代谢 1,2-丙二醇。使用元动力学和复制交换伞状采样,我们发现与微室内生成的有毒丙醛相比,PduA 六聚体的孔对于丙二醇底物的通过具有更低的能量障碍。这种能量效应与在收缩点突出到孔中的丝氨酸侧链与更自由渗透的丙二醇相比,与丙醛形成氢键的能力较低有关。研究结果强调了分子扩散和传输在新的生物学背景下的重要性。