Suppr超能文献

模拟细菌微区室结构以增强蓝藻的碳固定

Modeling bacterial microcompartment architectures for enhanced cyanobacterial carbon fixation.

作者信息

Trettel Daniel S, Pacheco Sara L, Laskie Asa K, Gonzalez-Esquer C Raul

机构信息

Los Alamos National Laboratory, Bioscience Division, Microbial and Biome Sciences Group, Los Alamos, NM, United States.

出版信息

Front Plant Sci. 2024 Feb 15;15:1346759. doi: 10.3389/fpls.2024.1346759. eCollection 2024.

Abstract

The carboxysome is a bacterial microcompartment (BMC) which plays a central role in the cyanobacterial CO-concentrating mechanism. These proteinaceous structures consist of an outer protein shell that partitions Rubisco and carbonic anhydrase from the rest of the cytosol, thereby providing a favorable microenvironment that enhances carbon fixation. The modular nature of carboxysomal architectures makes them attractive for a variety of biotechnological applications such as carbon capture and utilization. approaches, such as molecular dynamics (MD) simulations, can support future carboxysome redesign efforts by providing new spatio-temporal insights on their structure and function beyond experimental limitations. However, specific computational studies on carboxysomes are limited. Fortunately, all BMC (including the carboxysome) are highly structurally conserved which allows for practical inferences to be made between classes. Here, we review simulations on BMC architectures which shed light on (1) permeation events through the shell and (2) assembly pathways. These models predict the biophysical properties surrounding the central pore in BMC-H shell subunits, which in turn dictate the efficiency of substrate diffusion. Meanwhile, simulations on BMC assembly demonstrate that assembly pathway is largely dictated kinetically by cargo interactions while final morphology is dependent on shell factors. Overall, these findings are contextualized within the wider experimental BMC literature and framed within the opportunities for carboxysome redesign for biomanufacturing and enhanced carbon fixation.

摘要

羧酶体是一种细菌微区室(BMC),在蓝藻的二氧化碳浓缩机制中起着核心作用。这些蛋白质结构由一个外部蛋白质外壳组成,该外壳将核酮糖-1,5-二磷酸羧化酶/加氧酶(Rubisco)和碳酸酐酶与细胞溶质的其余部分分隔开来,从而提供一个有利的微环境,增强碳固定。羧酶体结构的模块化性质使其在各种生物技术应用中具有吸引力,如碳捕获和利用。分子动力学(MD)模拟等方法可以通过提供超越实验限制的关于其结构和功能的新时空见解,支持未来羧酶体的重新设计工作。然而,关于羧酶体的具体计算研究有限。幸运的是,所有的BMC(包括羧酶体)在结构上高度保守,这使得可以在不同类别之间进行实际推断。在这里,我们回顾了关于BMC结构的模拟,这些模拟揭示了(1)通过外壳的渗透事件和(2)组装途径。这些模型预测了BMC-H外壳亚基中心孔周围的生物物理性质,这反过来又决定了底物扩散的效率。同时,关于BMC组装的模拟表明,组装途径在很大程度上由货物相互作用动力学决定,而最终形态则取决于外壳因素。总体而言,这些发现是在更广泛的实验性BMC文献背景下进行阐述的,并围绕着为生物制造和增强碳固定而重新设计羧酶体的机会进行构建。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6661/10902431/36369f232f17/fpls-15-1346759-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验