Chemistry Department, Faculty of Sciences, K.N. Toosi University of Technology, Tehran, Iran.
Chemistry Department, Faculty of Sciences, University of Tehran, Tehran, Iran.
Curr Neuropharmacol. 2018;16(6):664-725. doi: 10.2174/1570159X15666170823095628.
Neurodegenerative diseases such as Alzheimer's disease (AD), amyotrophic lateral sclerosis, Parkinson's disease (PD), spinal cerebellar ataxias, and spinal and bulbar muscular atrophy are described by slow and selective degeneration of neurons and axons in the central nervous system (CNS) and constitute one of the major challenges of modern medicine. Computeraided or in silico drug design methods have matured into powerful tools for reducing the number of ligands that should be screened in experimental assays.
In the present review, the authors provide a basic background about neurodegenerative diseases and in silico techniques in the drug research. Furthermore, they review the various in silico studies reported against various targets in neurodegenerative diseases, including homology modeling, molecular docking, virtual high-throughput screening, quantitative structure activity relationship (QSAR), hologram quantitative structure activity relationship (HQSAR), 3D pharmacophore mapping, proteochemometrics modeling (PCM), fingerprints, fragment-based drug discovery, Monte Carlo simulation, molecular dynamic (MD) simulation, quantum-mechanical methods for drug design, support vector machines, and machine learning approaches.
Detailed analysis of the recently reported case studies revealed that the majority of them use a sequential combination of ligand and structure-based virtual screening techniques, with particular focus on pharmacophore models and the docking approach.
Neurodegenerative diseases have a multifactorial pathoetiological origin, so scientists have become persuaded that a multi-target therapeutic strategy aimed at the simultaneous targeting of multiple proteins (and therefore etiologies) involved in the development of a disease is recommended in future.
神经退行性疾病,如阿尔茨海默病(AD)、肌萎缩性侧索硬化症、帕金森病(PD)、脊髓小脑共济失调和脊髓延髓肌肉萎缩症,其特征是中枢神经系统(CNS)中的神经元和轴突缓慢而选择性地退化,这是现代医学面临的主要挑战之一。计算机辅助或计算药物设计方法已经成熟为减少在实验测定中筛选的配体数量的强大工具。
在本综述中,作者提供了神经退行性疾病和药物研究中的计算技术的基本背景。此外,他们回顾了针对神经退行性疾病的各种靶标报告的各种计算研究,包括同源建模、分子对接、虚拟高通量筛选、定量构效关系(QSAR)、全息定量构效关系(HQSAR)、3D 药效团映射、计算化学计量学模型(PCM)、指纹、基于片段的药物发现、蒙特卡罗模拟、分子动力学(MD)模拟、基于量子力学的药物设计方法、支持向量机和机器学习方法。
对最近报道的案例研究的详细分析表明,它们中的大多数使用配体和基于结构的虚拟筛选技术的顺序组合,特别关注药效团模型和对接方法。
神经退行性疾病具有多因素的病理发病机制,因此科学家们相信,未来推荐采用多靶点治疗策略,旨在同时针对涉及疾病发展的多种蛋白质(因此也是多种病因)进行靶向治疗。