Suppr超能文献

与邻氨基苯甲酰基-和6-氟邻氨基苯甲酰基-AMP复合的PqsA N端结构域的结构:铜绿假单胞菌喹诺酮信号(PQS)生物合成中的底物激活

Structures of the N-Terminal Domain of PqsA in Complex with Anthraniloyl- and 6-Fluoroanthraniloyl-AMP: Substrate Activation in Pseudomonas Quinolone Signal (PQS) Biosynthesis.

作者信息

Witzgall Florian, Ewert Wiebke, Blankenfeldt Wulf

机构信息

Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany.

Institut für Biophysikalische Chemie, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.

出版信息

Chembiochem. 2017 Oct 18;18(20):2045-2055. doi: 10.1002/cbic.201700374. Epub 2017 Sep 18.

Abstract

Pseudomonas aeruginosa, a prevalent pathogen in nosocomial infections and a major burden in cystic fibrosis, uses three interconnected quorum-sensing systems to coordinate virulence processes. At variance with other Gram-negative bacteria, one of these systems relies on 2-alkyl-4(1H)-quinolones (Pseudomonas quinolone signal, PQS) and might hence be an attractive target for new anti-infective agents. Here we report crystal structures of the N-terminal domain of anthranilate-CoA ligase PqsA, the first enzyme of PQS biosynthesis, in complex with anthraniloyl-AMP and with 6-fluoroanthraniloyl-AMP (6FABA-AMP) at 1.4 and 1.7 Å resolution. We find that PqsA belongs to an unrecognized subfamily of anthranilate-CoA ligases that recognize the amino group of anthranilate through a water-mediated hydrogen bond. The complex with 6FABA-AMP explains why 6FABA, an inhibitor of PQS biosynthesis, is a good substrate of PqsA. Together, our data might pave a way to new pathoblockers in P. aeruginosa infections.

摘要

铜绿假单胞菌是医院感染中常见的病原体,也是囊性纤维化的主要负担,它利用三种相互关联的群体感应系统来协调毒力过程。与其他革兰氏阴性菌不同,其中一种系统依赖于2-烷基-4(1H)-喹诺酮(假单胞菌喹诺酮信号,PQS),因此可能是新型抗感染药物的一个有吸引力的靶点。在此,我们报告了邻氨基苯甲酸-CoA连接酶PqsA的N端结构域的晶体结构,PqsA是PQS生物合成的第一个酶,它与邻氨基苯甲酰-AMP以及6-氟邻氨基苯甲酰-AMP(6FABA-AMP)形成复合物,分辨率分别为1.4 Å和1.7 Å。我们发现PqsA属于一个未被识别的邻氨基苯甲酸-CoA连接酶亚家族,该亚家族通过水介导的氢键识别邻氨基苯甲酸的氨基。与6FABA-AMP形成的复合物解释了为什么6FABA(一种PQS生物合成的抑制剂)是PqsA的良好底物。总之,我们的数据可能为铜绿假单胞菌感染的新型病原体阻断剂开辟一条道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验