1Kaiser Permanente Division of Research,Oakland,California.
2Contra Costa Public Health Clinic Services,Martinez,California.
Infect Control Hosp Epidemiol. 2017 Oct;38(10):1196-1203. doi: 10.1017/ice.2017.176. Epub 2017 Aug 24.
BACKGROUND Predicting recurrent Clostridium difficile infection (rCDI) remains difficult.
We employed a retrospective cohort design. Granular electronic medical record (EMR) data had been collected from patients hospitalized at 21 Kaiser Permanente Northern California hospitals. The derivation dataset (2007-2013) included data from 9,386 patients who experienced incident CDI (iCDI) and 1,311 who experienced their first CDI recurrences (rCDI). The validation dataset (2014) included data from 1,865 patients who experienced incident CDI and 144 who experienced rCDI. Using multiple techniques, including machine learning, we evaluated more than 150 potential predictors. Our final analyses evaluated 3 models with varying degrees of complexity and 1 previously published model. RESULTS Despite having a large multicenter cohort and access to granular EMR data (eg, vital signs, and laboratory test results), none of the models discriminated well (c statistics, 0.591-0.605), had good calibration, or had good explanatory power. CONCLUSIONS Our ability to predict rCDI remains limited. Given currently available EMR technology, improvements in prediction will require incorporating new variables because currently available data elements lack adequate explanatory power. Infect Control Hosp Epidemiol 2017;38:1196-1203.
预测复发性艰难梭菌感染(rCDI)仍然具有挑战性。
我们采用回顾性队列设计。从 21 家 Kaiser Permanente 北加州医院住院患者的颗粒状电子病历(EMR)数据中收集数据。推导数据集(2007-2013 年)包括 9386 例经历初次艰难梭菌感染(iCDI)和 1311 例经历首次艰难梭菌感染复发(rCDI)的患者数据。验证数据集(2014 年)包括 1865 例经历初次艰难梭菌感染和 144 例经历 rCDI 的患者数据。我们使用包括机器学习在内的多种技术评估了超过 150 个潜在的预测因子。我们的最终分析评估了 3 种具有不同复杂程度的模型和 1 种先前发表的模型。
尽管有一个大型多中心队列和对颗粒状 EMR 数据(如生命体征和实验室检查结果)的访问,但没有一个模型能够很好地区分(c 统计量为 0.591-0.605)、具有良好的校准能力或具有良好的解释能力。
我们预测 rCDI 的能力仍然有限。鉴于目前可用的 EMR 技术,要提高预测能力,需要纳入新的变量,因为目前可用的数据元素缺乏足够的解释能力。感染控制与医院流行病学 2017;38:1196-1203。