Suppr超能文献

洪水已侵入地下室了吗?关于检验医学中机器学习的系统文献综述。

Has the Flood Entered the Basement? A Systematic Literature Review about Machine Learning in Laboratory Medicine.

作者信息

Ronzio Luca, Cabitza Federico, Barbaro Alessandro, Banfi Giuseppe

机构信息

Department of Informatics, University of Milano-Bicocca, 20126 Milan, Italy.

IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi, 4, 20161 Milan, Italy.

出版信息

Diagnostics (Basel). 2021 Feb 22;11(2):372. doi: 10.3390/diagnostics11020372.

Abstract

This article presents a systematic literature review that expands and updates a previous review on the application of machine learning to laboratory medicine. We used Scopus and PubMed to collect, select and analyse the papers published from 2017 to the present in order to highlight the main studies that have applied machine learning techniques to haematochemical parameters and to review their diagnostic and prognostic performance. In doing so, we aim to address the question we asked three years ago about the potential of these techniques in laboratory medicine and the need to leverage a tool that was still under-utilised at that time.

摘要

本文呈现了一项系统性文献综述,该综述扩展并更新了之前关于机器学习在检验医学中应用的综述。我们使用Scopus和PubMed数据库来收集、筛选和分析2017年至今发表的论文,以突出那些将机器学习技术应用于血液生化参数的主要研究,并评估其诊断和预后性能。通过这样做,我们旨在回答三年前提出的关于这些技术在检验医学中的潜力以及利用当时仍未得到充分利用的工具的必要性的问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0a/7926482/a2e81d48603f/diagnostics-11-00372-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验