Rissanen Ilona, Stass Robert, Zeltina Antra, Li Sai, Hepojoki Jussi, Harlos Karl, Gilbert Robert J C, Huiskonen Juha T, Bowden Thomas A
Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom.
Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland.
J Virol. 2017 Oct 13;91(21). doi: 10.1128/JVI.00378-17. Print 2017 Nov 1.
Hantaviruses are zoonotic pathogens that cause severe hemorrhagic fever and pulmonary syndrome. The outer membrane of the hantavirus envelope displays a lattice of two glycoproteins, Gn and Gc, which orchestrate host cell recognition and entry. Here, we describe the crystal structure of the Gn glycoprotein ectodomain from the Asiatic Hantaan virus (HTNV), the most prevalent pathogenic hantavirus. Structural overlay analysis reveals that the HTNV Gn fold is highly similar to the Gn of Puumala virus (PUUV), a genetically and geographically distinct and less pathogenic hantavirus found predominantly in northeastern Europe, confirming that the hantaviral Gn fold is architecturally conserved across hantavirus clades. Interestingly, HTNV Gn crystallized at acidic pH, in a compact tetrameric configuration distinct from the organization at neutral pH. Analysis of the Gn, both in solution and in the context of the virion, confirms the pH-sensitive oligomeric nature of the glycoprotein, indicating that the hantaviral Gn undergoes structural transitions during host cell entry. These data allow us to present a structural model for how acidification during endocytic uptake of the virus triggers the dissociation of the metastable Gn-Gc lattice to enable insertion of the Gc-resident hydrophobic fusion loops into the host cell membrane. Together, these data reveal the dynamic plasticity of the structurally conserved hantaviral surface. Although outbreaks of Korean hemorrhagic fever were first recognized during the Korean War (1950 to 1953), it was not until 1978 that they were found to be caused by Hantaan virus (HTNV), the most prevalent pathogenic hantavirus. Here, we describe the crystal structure of HTNV envelope glycoprotein Gn, an integral component of the Gn-Gc glycoprotein spike complex responsible for host cell entry. HTNV Gn is structurally conserved with the Gn of a genetically and geographically distal hantavirus, Puumala virus, indicating that the observed α/β fold is well preserved across the family. The combination of our crystal structure with solution state analysis of recombinant protein and electron cryo-microscopy of acidified hantavirus allows us to propose a model for endosome-induced reorganization of the hantaviral glycoprotein lattice. This provides a molecular-level rationale for the exposure of the hydrophobic fusion loops on the Gc, a process required for fusion of viral and cellular membranes.
汉坦病毒是引起严重出血热和肺综合征的人畜共患病原体。汉坦病毒包膜的外膜呈现出由两种糖蛋白Gn和Gc组成的晶格结构,它们共同协调宿主细胞的识别和进入过程。在此,我们描述了来自亚洲汉滩病毒(HTNV)的Gn糖蛋白胞外域的晶体结构,HTNV是最常见的致病性汉坦病毒。结构重叠分析表明,HTNV的Gn折叠结构与普马拉病毒(PUUV)的Gn高度相似,PUUV是一种在遗传和地理上都不同且致病性较低的汉坦病毒,主要在欧洲东北部发现,这证实了汉坦病毒的Gn折叠结构在不同汉坦病毒分支中在结构上是保守的。有趣的是,HTNV的Gn在酸性pH条件下结晶,呈紧密的四聚体构象,与中性pH条件下的结构不同。对溶液中和病毒粒子中的Gn进行分析,证实了该糖蛋白具有pH敏感性寡聚性质,表明汉坦病毒的Gn在宿主细胞进入过程中经历了结构转变。这些数据使我们能够提出一个结构模型,说明病毒内吞摄取过程中的酸化如何触发亚稳态的Gn-Gc晶格解离,从而使Gc上的疏水融合环插入宿主细胞膜。总之,这些数据揭示了结构保守的汉坦病毒表面的动态可塑性。虽然朝鲜出血热疫情在朝鲜战争(1950年至1953年)期间首次被认识到,但直到1978年才发现它们是由汉滩病毒(HTNV)引起的,HTNV是最常见的致病性汉坦病毒。在此,我们描述了HTNV包膜糖蛋白Gn的晶体结构,Gn是负责宿主细胞进入的Gn-Gc糖蛋白刺突复合物的一个组成部分。HTNV的Gn在结构上与一种在遗传和地理上较远的汉坦病毒——普马拉病毒的Gn保守,这表明所观察到的α/β折叠在整个病毒家族中保存良好。我们的晶体结构与重组蛋白的溶液状态分析以及酸化汉坦病毒的冷冻电镜分析相结合,使我们能够提出一个内体诱导的汉坦病毒糖蛋白晶格重组模型。这为Gc上疏水融合环的暴露提供了分子水平的解释,而这一过程是病毒膜与细胞膜融合所必需的。