Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801-3080, USA.
Nat Commun. 2017 Aug 23;8(1):325. doi: 10.1038/s41467-017-00387-w.
Ultracold atoms in optical lattices offer a unique platform for investigating disorder-driven phenomena. While static disordered site potentials have been explored in a number of experiments, a more general, dynamical control over site-energy and off-diagonal tunnelling disorder has been lacking. The use of atomic quantum states as synthetic dimensions has introduced the spectroscopic, site-resolved control necessary to engineer more tailored realisations of disorder. Here, we present explorations of dynamical and tunneling disorder in an atomic system by controlling laser-driven dynamics of atomic population in a momentum-space lattice. By applying static tunnelling phase disorder to a one-dimensional lattice, we observe ballistic quantum spreading. When the applied disorder fluctuates on time scales comparable to intersite tunnelling, we instead observe diffusive atomic transport, signalling a crossover from quantum to classical expansion dynamics. We compare these observations to the case of static site-energy disorder, where we directly observe quantum localisation.Cold atom quantum simulation has had challenges in realising the tailored, dynamic types of disorder relevant to real materials. Here, the authors use synthetic momentum-space lattices to engineer spatially and dynamically controlled disorder to observe ballistic, diffusive, and arrested atomic transport.
光学晶格中的超冷原子为研究受无序驱动的现象提供了一个独特的平台。虽然已经在许多实验中探索了静态无序的点势,但对点能和非对角隧道无序的更一般、动态控制仍然缺乏。原子量子态作为合成维度的引入,提供了光谱、点分辨控制的必要条件,从而可以设计出更适合实际应用的无序实现。在这里,我们通过控制动量空间晶格中原子布居的激光驱动动力学,探索了原子系统中的动力学和隧道无序。通过对一维晶格施加静态隧道相位无序,我们观察到弹道量子扩展。当施加的无序在与站点间隧道相当的时间尺度上波动时,我们观察到的是扩散原子输运,这标志着从量子扩展动力学到经典扩展动力学的转变。我们将这些观察结果与静态点能无序的情况进行了比较,在静态点能无序的情况下,我们直接观察到了量子局域化。冷原子量子模拟在实现与真实材料相关的定制化、动态类型的无序方面一直存在挑战。在这里,作者使用合成动量空间晶格来设计空间和动态控制的无序,以观察弹道、扩散和被阻止的原子输运。