Wall Michael L, Koller Andrew P, Li Shuming, Zhang Xibo, Cooper Nigel R, Ye Jun, Rey Ana Maria
JILA, NIST and University of Colorado, 440 UCB, Boulder, Colorado 80309, USA.
Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA.
Phys Rev Lett. 2016 Jan 22;116(3):035301. doi: 10.1103/PhysRevLett.116.035301.
We propose the use of optical lattice clocks operated with fermionic alkaline-earth atoms to study spin-orbit coupling (SOC) in interacting many-body systems. The SOC emerges naturally during the clock interrogation, when atoms are allowed to tunnel and accumulate a phase set by the ratio of the "magic" lattice wavelength to the clock transition wavelength. We demonstrate how standard protocols such as Rabi and Ramsey spectroscopy that take advantage of the sub-Hertz resolution of state-of-the-art clock lasers can perform momentum-resolved band tomography and determine SOC-induced s-wave collisions in nuclear-spin-polarized fermions. With the use of a second counterpropagating clock beam, we propose a method for engineering controlled atomic transport and study how it is modified by p- and s-wave interactions. The proposed spectroscopic probes provide clean and well-resolved signatures at current clock operating temperatures.
我们提议使用由费米子碱土原子操控的光晶格钟来研究相互作用多体系统中的自旋轨道耦合(SOC)。当原子被允许隧穿并积累由“魔幻”晶格波长与钟跃迁波长之比所设定的相位时,SOC在时钟询问期间自然出现。我们展示了诸如拉比和拉姆齐光谱等标准协议如何利用最先进的时钟激光器的亚赫兹分辨率来执行动量分辨能带层析成像,并确定核自旋极化费米子中SOC诱导的s波碰撞。通过使用第二束反向传播的时钟光束,我们提出了一种用于操控受控原子输运的方法,并研究其如何被p波和s波相互作用所改变。所提出的光谱探测在当前时钟工作温度下提供了清晰且分辨良好的信号。