Suppr超能文献

一种用于改进姿态预测和虚拟筛选性能的交叉对接流水线。

A cross docking pipeline for improving pose prediction and virtual screening performance.

机构信息

Structural Bioinformatics Team, Center for Life Science Technologies, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.

出版信息

J Comput Aided Mol Des. 2018 Jan;32(1):163-173. doi: 10.1007/s10822-017-0048-z. Epub 2017 Aug 23.

Abstract

Pose prediction and virtual screening performance of a molecular docking method depend on the choice of protein structures used for docking. Multiple structures for a target protein are often used to take into account the receptor flexibility and problems associated with a single receptor structure. However, the use of multiple receptor structures is computationally expensive when docking a large library of small molecules. Here, we propose a new cross-docking pipeline suitable to dock a large library of molecules while taking advantage of multiple target protein structures. Our method involves the selection of a suitable receptor for each ligand in a screening library utilizing ligand 3D shape similarity with crystallographic ligands. We have prospectively evaluated our method in D3R Grand Challenge 2 and demonstrated that our cross-docking pipeline can achieve similar or better performance than using either single or multiple-receptor structures. Moreover, our method displayed not only decent pose prediction performance but also better virtual screening performance over several other methods.

摘要

配体预测和虚拟筛选性能的分子对接方法取决于对接所使用的蛋白质结构的选择。通常使用多个靶蛋白结构来考虑受体的灵活性和与单个受体结构相关的问题。然而,当对接一个大型小分子库时,使用多个受体结构在计算上是昂贵的。在这里,我们提出了一种新的交叉对接管道,适用于对接大型分子库,同时利用多个靶蛋白结构的优势。我们的方法涉及利用晶体配体的配体 3D 形状相似性,为筛选库中的每个配体选择合适的受体。我们前瞻性地在 D3R Grand Challenge 2 中评估了我们的方法,并证明我们的交叉对接管道可以实现与使用单个或多个受体结构相似或更好的性能。此外,我们的方法不仅表现出良好的配体构象预测性能,而且在几个其他方法中也表现出更好的虚拟筛选性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验