Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033-1310, USA.
Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA, 19486, USA.
J Comput Aided Mol Des. 2018 Jan;32(1):129-142. doi: 10.1007/s10822-017-0072-z. Epub 2017 Oct 6.
The 2016 D3R Grand Challenge 2 includes both pose and affinity or ranking predictions. This article is focused exclusively on affinity predictions submitted to the D3R challenge from a collaborative effort of the modeling and informatics group. Our submissions include ranking of 102 ligands covering 4 different chemotypes against the FXR ligand binding domain structure, and the relative binding affinity predictions of the two designated free energy subsets of 15 and 18 compounds. Using all the complex structures prepared in the same way allowed us to cover many types of workflows and compare their performances effectively. We evaluated typical workflows used in our daily structure-based design modeling support, which include docking scores, force field-based scores, QM/MM, MMGBSA, MD-MMGBSA, and MacroModel interaction energy estimations. The best performing methods for the two free energy subsets are discussed. Our results suggest that affinity ranking still remains very challenging; that the knowledge of more structural information does not necessarily yield more accurate predictions; and that visual inspection and human intervention are considerably important for ranking. Knowledge of the mode of action and protein flexibility along with visualization tools that depict polar and hydrophobic maps are very useful for visual inspection. QM/MM-based workflows were found to be powerful in affinity ranking and are encouraged to be applied more often. The standardized input and output enable systematic analysis and support methodology development and improvement for high level blinded predictions.
2016 年 D3R 大挑战 2 既包括构象预测又包括亲和力或排序预测。本文仅专注于建模和信息学组提交给 D3R 挑战赛的亲和力预测。我们的提交内容包括针对 FXR 配体结合域结构的 102 种配体的排序,以及针对两个指定的自由能子集(15 种和 18 种化合物)的相对结合亲和力预测。以相同的方式准备所有复合物结构使我们能够涵盖许多类型的工作流程并有效地比较它们的性能。我们评估了我们日常基于结构的设计建模支持中使用的典型工作流程,包括对接评分、基于力场的评分、QM/MM、MMGBSA、MD-MMGBSA 和 MacroModel 相互作用能估计。讨论了两个自由能子集的最佳表现方法。我们的结果表明,亲和力排序仍然非常具有挑战性;更多结构信息的知识不一定能产生更准确的预测;对于排序来说,人工干预是非常重要的。了解作用模式和蛋白质的灵活性以及描绘极性和疏水性图的可视化工具对于人工干预非常有用。基于 QM/MM 的工作流程在亲和力排序中非常有效,鼓励更频繁地应用。标准化的输入和输出使系统分析和支持高水平盲法预测的方法开发和改进成为可能。