Suppr超能文献

在药物设计数据资源重大挑战 2 中诱导契合对接和元动力学中获得的经验教训。

Lessons learned in induced fit docking and metadynamics in the Drug Design Data Resource Grand Challenge 2.

机构信息

Computational Chemistry and Cheminformatics, Eli Lilly and Company Ltd., Windlesham, UK.

出版信息

J Comput Aided Mol Des. 2018 Jan;32(1):45-58. doi: 10.1007/s10822-017-0081-y. Epub 2017 Nov 10.

Abstract

Two of the major ongoing challenges in computational drug discovery are predicting the binding pose and affinity of a compound to a protein. The Drug Design Data Resource Grand Challenge 2 was developed to address these problems and to drive development of new methods. The challenge provided the 2D structures of compounds for which the organizers help blinded data in the form of 35 X-ray crystal structures and 102 binding affinity measurements and challenged participants to predict the binding pose and affinity of the compounds. We tested a number of pose prediction methods as part of the challenge; we found that docking methods that incorporate protein flexibility (Induced Fit Docking) outperformed methods that treated the protein as rigid. We also found that using binding pose metadynamics, a molecular dynamics based method, to score docked poses provided the best predictions of our methods with an average RMSD of 2.01 Å. We tested both structure-based (e.g. docking) and ligand-based methods (e.g. QSAR) in the affinity prediction portion of the competition. We found that our structure-based methods based on docking with Smina (Spearman ρ = 0.614), performed slightly better than our ligand-based methods (ρ = 0.543), and had equivalent performance with the other top methods in the competition. Despite the overall good performance of our methods in comparison to other participants in the challenge, there exists significant room for improvement especially in cases such as these where protein flexibility plays such a large role.

摘要

计算药物发现中两个主要的持续挑战是预测化合物与蛋白质的结合构象和亲和力。药物设计数据资源大挑战 2 是为了解决这些问题并推动新方法的发展而开发的。该挑战提供了化合物的 2D 结构,组织者以 35 个 X 射线晶体结构和 102 个结合亲和力测量的盲数据的形式提供帮助,并挑战参与者预测化合物的结合构象和亲和力。我们测试了许多构象预测方法作为挑战的一部分;我们发现,纳入蛋白质柔性的对接方法(诱导契合对接)优于将蛋白质视为刚性的方法。我们还发现,使用基于结合构象的元动力学(一种基于分子动力学的方法)对对接构象进行评分,提供了我们方法中最佳的预测,平均 RMSD 为 2.01Å。我们在竞争的亲和力预测部分测试了基于结构的方法(例如对接)和基于配体的方法(例如 QSAR)。我们发现,我们基于对接的基于结构的方法(Spearman ρ=0.614)比我们基于配体的方法(ρ=0.543)略好,并且与竞争中的其他顶级方法具有等效的性能。尽管与挑战中的其他参与者相比,我们的方法的整体性能良好,但仍有很大的改进空间,特别是在蛋白质柔性发挥如此重要作用的情况下。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验