a Department of Biomedical Engineering , Washington University in St. Louis , St. Louis , MO , USA.
Channels (Austin). 2017 Nov 2;11(6):517-533. doi: 10.1080/19336950.2017.1369637. Epub 2017 Sep 21.
Shortly after cardiac Na channels activate and initiate the action potential, inactivation ensues within milliseconds, attenuating the peak Na current, I and allowing the cell membrane to repolarize. A very limited number of Na channels that do not inactivate carry a persistent I, or late I. While late I is only a small fraction of peak magnitude, it significantly prolongs ventricular action potential duration, which predisposes patients to arrhythmia. Here, we review our current understanding of inactivation mechanisms, their regulation, and how they have been modeled computationally. Based on this body of work, we conclude that inactivation and its connection to late I would be best modeled with a "feet-on-the-door" approach where multiple channel components participate in determining inactivation and late I. This model reflects experimental findings showing that perturbation of many channel locations can destabilize inactivation and cause pathological late I.
在心脏钠离子通道激活并引发动作电位后不久,失活便会在数毫秒内发生,从而减弱峰值钠离子电流 I ,使细胞膜复极化。极少数未失活的钠离子通道会持续产生 I ,即晚期 I 。虽然晚期 I 仅占峰值幅度的一小部分,但它会显著延长心室动作电位持续时间,使患者容易发生心律失常。在这里,我们回顾了我们目前对失活机制及其调节的理解,以及它们在计算模型中的应用。基于这些研究成果,我们得出结论,失活及其与晚期 I 的关系最好通过“脚踏门”方法进行建模,其中多个通道组件参与决定失活和晚期 I 。该模型反映了实验结果,表明许多通道位置的扰动会使失活不稳定,并导致病理性晚期 I 。