Psychology, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States.
Department of Psychology, Linnaeus University, Sweden.
Front Neuroendocrinol. 2017 Oct;47:154-166. doi: 10.1016/j.yfrne.2017.08.003. Epub 2017 Aug 22.
Developmental studies of hormones and behavior often include littermates-rodent siblings that share early-life experiences and genes. Due to between-litter variation (i.e., litter effects), the statistical assumption of independent observations is untenable. In two literatures-natural variation in maternal care and prenatal stress-entire litters are categorized based on maternal behavior or experimental condition. Here, we (1) review both literatures; (2) simulate false positive rates for commonly used statistical methods in each literature; and (3) characterize small sample performance of multilevel models (MLM) and generalized estimating equations (GEE). We found that the assumption of independence was routinely violated (>85%), false positives (α=0.05) exceeded nominal levels (up to 0.70), and power (1-β) rarely surpassed 0.80 (even for optimistic sample and effect sizes). Additionally, we show that MLMs and GEEs have adequate performance for common research designs. We discuss implications for the extant literature, the field of behavioral neuroendocrinology, and provide recommendations.
发育研究中的激素和行为通常包括同窝仔鼠——具有相似早期生活经历和基因的啮齿动物兄弟或姐妹。由于窝间变异(即窝效应),独立观察的统计假设站不住脚。在两个文献中——母性行为的自然变异和产前应激——根据母性行为或实验条件对整个窝仔进行分类。在这里,我们(1)综述了这两个文献;(2)模拟了每个文献中常用统计方法的假阳性率;(3)描述了多层次模型(MLM)和广义估计方程(GEE)的小样本性能。我们发现独立性假设经常被违反(>85%),假阳性率(α=0.05)超过了名义水平(高达 0.70),功效(1-β)很少超过 0.80(即使对于乐观的样本和效应大小)。此外,我们还表明,MLM 和 GEE 对于常见的研究设计具有足够的性能。我们讨论了对现有文献、行为神经内分泌学领域的影响,并提出了建议。