Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, Bari, Italy.
Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Australia.
Free Radic Biol Med. 2018 Jan;114:69-83. doi: 10.1016/j.freeradbiomed.2017.08.014. Epub 2017 Aug 31.
Mitochondria play a pivotal role in cellular energy-generating processes and are considered master regulators of cell life and death fate. Mitochondrial function integrates signalling networks in several metabolic pathways controlling neurogenesis and neuroplasticity. Indeed, dysfunctional mitochondria and mitochondrial-dependent activation of intracellular stress cascades are critical initiating events in many human neurodegenerative or neurodevelopmental diseases including Down syndrome (DS). It is well established that trisomy of human chromosome 21 can cause DS. DS is associated with neurodevelopmental delay, intellectual disability and early neurodegeneration. Recently, molecular mechanisms responsible for mitochondrial damage and energy deficits have been identified and characterized in several DS-derived human cells and animal models of DS. Therefore, therapeutic strategies targeting mitochondria could have great potential for new treatment regimens in DS. The purpose of this review is to highlight recent studies concerning mitochondrial impairment in DS, focusing on alterations of the molecular pathways controlling mitochondrial function. We will also discuss the effects and molecular mechanisms of naturally occurring and chemically synthetized drugs that exert neuroprotective effects through modulation of mitochondrial function and attenuation of oxidative stress. These compounds might represent novel therapeutic tools for the modulation of energy deficits in DS.
线粒体在细胞能量产生过程中发挥着关键作用,被认为是细胞生死命运的主要调节者。线粒体功能整合了控制神经发生和神经可塑性的几个代谢途径中的信号网络。事实上,功能失调的线粒体和依赖线粒体的细胞内应激级联的激活是许多人类神经退行性或神经发育性疾病(包括唐氏综合征(DS))的关键起始事件。众所周知,人类 21 号染色体的三体性会导致 DS。DS 与神经发育迟缓、智力残疾和早期神经退行性变有关。最近,在几种源自 DS 的人类细胞和 DS 的动物模型中,已经确定并表征了导致线粒体损伤和能量不足的分子机制。因此,针对线粒体的治疗策略在 DS 的新治疗方案中可能具有巨大的潜力。本综述的目的是强调最近关于 DS 中线粒体损伤的研究,重点关注控制线粒体功能的分子途径的改变。我们还将讨论天然存在和化学合成药物的作用和分子机制,这些药物通过调节线粒体功能和减轻氧化应激来发挥神经保护作用。这些化合物可能代表调节 DS 能量不足的新的治疗工具。