Saçar Demirci Müşerref Duygu, Baumbach Jan, Allmer Jens
Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, 35430, Turkey.
Computational Systems Biology, Max Planck Institute for Informatics, 66123, Saarbrücken, Germany.
Nat Commun. 2017 Aug 24;8(1):330. doi: 10.1038/s41467-017-00403-z.
MicroRNAs are crucial for post-transcriptional gene regulation, and their dysregulation has been associated with diseases like cancer and, therefore, their analysis has become popular. The experimental discovery of miRNAs is cumbersome and, thus, many computational tools have been proposed. Here we assess 13 ab initio pre-miRNA detection approaches using all relevant, published, and novel data sets while judging algorithm performance based on ten intrinsic performance measures. We present an extensible framework, izMiR, which allows for the unbiased comparison of existing algorithms, adding new ones, and combining multiple approaches into ensemble methods. In an exhaustive attempt, we condense the results of millions of computations and show that no method is clearly superior; however, we provide a guideline for biomedical researchers to select a tool. Finally, we demonstrate that combining all of the methods into one ensemble approach, for the first time, allows reliable purely computational pre-miRNA detection in large eukaryotic genomes.As the experimental discovery of microRNAs (miRNAs) is cumbersome, computational tools have been developed for the prediction of pre-miRNAs. Here the authors develop a framework to assess the performance of existing and novel pre-miRNA prediction tools and provide guidelines for selecting an appropriate approach for a given data set.
微小RNA对于转录后基因调控至关重要,其失调与癌症等疾病相关,因此对它们的分析已变得流行起来。微小RNA的实验发现过程繁琐,因此人们提出了许多计算工具。在这里,我们使用所有相关的、已发表的和新的数据集评估了13种从头开始预测前体微小RNA的方法,同时基于十种内在性能指标来判断算法性能。我们提出了一个可扩展的框架izMiR,它允许对现有算法进行无偏比较、添加新算法,并将多种方法组合成集成方法。通过详尽的尝试,我们汇总了数百万次计算的结果,结果表明没有一种方法明显更优;然而,我们为生物医学研究人员提供了选择工具的指南。最后,我们证明,首次将所有方法组合成一种集成方法能够在大型真核生物基因组中实现可靠的纯计算前体微小RNA检测。由于微小RNA(miRNA)的实验发现过程繁琐,人们已开发出计算工具来预测前体微小RNA。本文作者开发了一个框架来评估现有和新型前体微小RNA预测工具的性能,并为针对给定数据集选择合适的方法提供指南。