Suppr超能文献

七氟醚全身麻醉期间数据驱动的光学神经监测方法的研究

Investigation of data-driven optical neuromonitoring approach during general anesthesia with sevoflurane.

作者信息

Hernandez-Meza Gabriela, Izzetoglu Meltem, Sacan Ahmet, Green Michael, Izzetoglu Kurtulus

机构信息

Drexel University, School of Biomedical Engineering, Science and Health Systems, Philadelphia, Pennsylvania, United States.

Drexel University College of Medicine, Hahnemann University Hospital, Department of Anesthesiology, Philadelphia, Pennsylvania, United States.

出版信息

Neurophotonics. 2017 Oct;4(4):041408. doi: 10.1117/1.NPh.4.4.041408. Epub 2017 Aug 19.

Abstract

Anesthesia monitoring currently needs a reliable method to evaluate the effects of the anesthetics on its primary target, the brain. This study focuses on investigating the clinical usability of a functional near-infrared spectroscopy (fNIRS)-derived machine learning classifier to perform automated and real-time classification of maintenance and emergence states during sevoflurane anesthesia. For 19 surgical procedures, we examine the entire continuum of the maintenance-transition-emergence phases and evaluate the predictive capability of a support vector machine (SVM) classifier during these phases. We demonstrate the robustness of the predictions made by the SVM classifier and compare its performance with that of minimum alveolar concentration (MAC) and bispectral (BIS) index-based predictions. The fNIRS-SVM investigated in this study provides evidence to the usability of the fNIRS signal for anesthesia monitoring. The method presented enables classification of the signal as maintenance or emergence automatically as well as in real-time with high accuracy, sensitivity, and specificity. The features local mean HbTotal, std [Formula: see text], local min Hb and [Formula: see text], and range Hb and [Formula: see text] were found to be robust biomarkers of this binary classification task. Furthermore, fNIRS-SVM was capable of identifying emergence before movement in a larger number of patients than BIS and MAC.

摘要

目前,麻醉监测需要一种可靠的方法来评估麻醉剂对其主要作用目标——大脑的影响。本研究重点探讨基于功能近红外光谱(fNIRS)的机器学习分类器在七氟烷麻醉期间对维持期和苏醒期进行自动实时分类的临床实用性。对于19例外科手术,我们研究了维持-过渡-苏醒阶段的整个连续过程,并评估了支持向量机(SVM)分类器在这些阶段的预测能力。我们展示了SVM分类器预测的稳健性,并将其性能与基于最低肺泡浓度(MAC)和脑电双频指数(BIS)的预测性能进行比较。本研究中所研究的fNIRS-SVM为fNIRS信号用于麻醉监测的实用性提供了证据。所提出的方法能够自动且实时地将信号准确分类为维持期或苏醒期,具有高准确性、敏感性和特异性。发现局部平均总血红蛋白(HbTotal)、标准差[公式:见原文]、局部最小血红蛋白和[公式:见原文]以及血红蛋白范围和[公式:见原文]这些特征是该二元分类任务的稳健生物标志物。此外,与BIS和MAC相比,fNIRS-SVM能够在更多患者中在运动出现之前识别出苏醒。

相似文献

3
Measuring Mental Workload with EEG+fNIRS.使用脑电图+功能性近红外光谱技术测量心理负荷
Front Hum Neurosci. 2017 Jul 14;11:359. doi: 10.3389/fnhum.2017.00359. eCollection 2017.
9
Classification of Three Anesthesia Stages Based on Near-Infrared Spectroscopy Signals.基于近红外光谱信号的三种麻醉阶段分类
IEEE J Biomed Health Inform. 2024 Sep;28(9):5270-5279. doi: 10.1109/JBHI.2024.3409163. Epub 2024 Sep 5.

本文引用的文献

5
Near-infrared spectroscopy for the evaluation of anesthetic depth.用于评估麻醉深度的近红外光谱法。
Biomed Res Int. 2015;2015:939418. doi: 10.1155/2015/939418. Epub 2015 Oct 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验