Corbett Kevin D
Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA, USA.
Departments of Cellular & Molecular Medicine and Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA.
Prog Mol Subcell Biol. 2017;56:429-455. doi: 10.1007/978-3-319-58592-5_18.
In eukaryotic cell division, the Spindle Assembly Checkpoint (SAC) plays a key regulatory role by monitoring the status of chromosome-microtubule attachments and allowing chromosome segregation only after all chromosomes are properly attached to spindle microtubules. While the identities of SAC components have been known, in some cases, for over two decades, the molecular mechanisms of the SAC have remained mostly mysterious until very recently. In the past few years, advances in biochemical reconstitution, structural biology, and bioinformatics have fueled an explosion in the molecular understanding of the SAC. This chapter seeks to synthesize these recent advances and place them in a biological context, in order to explain the mechanisms of SAC activation and silencing at a molecular level.
在真核细胞分裂过程中,纺锤体组装检查点(SAC)通过监测染色体与微管的附着状态发挥关键调控作用,并且只有在所有染色体都正确附着于纺锤体微管后才允许染色体分离。虽然在某些情况下,人们已经知道SAC组件的身份超过二十年了,但直到最近,SAC的分子机制在很大程度上仍然是个谜。在过去几年中,生化重组、结构生物学和生物信息学的进展推动了对SAC分子理解的激增。本章旨在综合这些最新进展,并将它们置于生物学背景中,以便在分子水平上解释SAC激活和沉默的机制。