Suppr超能文献

生物工程解决方案应对 CAR T 细胞制造挑战。

Bioengineering Solutions for Manufacturing Challenges in CAR T Cells.

机构信息

Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA.

Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, USA.

出版信息

Biotechnol J. 2018 Feb;13(2). doi: 10.1002/biot.201700095. Epub 2017 Sep 18.

Abstract

The next generation of therapeutic products to be approved for the clinic is anticipated to be cell therapies, termed "living drugs" for their capacity to dynamically and temporally respond to changes during their production ex vivo and after their administration in vivo. Genetically engineered chimeric antigen receptor (CAR) T cells have rapidly developed into powerful tools to harness the power of immune system manipulation against cancer. Regulatory agencies are beginning to approve CAR T cell therapies due to their striking efficacy in treating some hematological malignancies. However, the engineering and manufacturing of such cells remains a challenge for widespread adoption of this technology. Bioengineering approaches including biomaterials, synthetic biology, metabolic engineering, process control and automation, and in vitro disease modeling could offer promising methods to overcome some of these challenges. Here, we describe the manufacturing process of CAR T cells, highlighting potential roles for bioengineers to partner with biologists and clinicians to advance the manufacture of these complex cellular products under rigorous regulatory and quality control.

摘要

预计下一代获准进入临床应用的治疗产品将是细胞疗法,因其具有在体外生产和体内给药后动态和时间响应变化的能力,而被称为“活药物”。经过基因工程改造的嵌合抗原受体 (CAR) T 细胞已迅速发展成为利用免疫系统对抗癌症的强大工具。由于其在治疗某些血液恶性肿瘤方面的显著疗效,监管机构开始批准 CAR T 细胞疗法。然而,此类细胞的工程和制造仍然是广泛采用该技术的一个挑战。生物工程方法包括生物材料、合成生物学、代谢工程、过程控制和自动化以及体外疾病建模,可为克服其中一些挑战提供有前景的方法。在这里,我们描述了 CAR T 细胞的制造过程,强调了生物工程师与生物学家和临床医生合作的潜在作用,以在严格的监管和质量控制下推进这些复杂细胞产品的制造。

相似文献

1
Bioengineering Solutions for Manufacturing Challenges in CAR T Cells.
Biotechnol J. 2018 Feb;13(2). doi: 10.1002/biot.201700095. Epub 2017 Sep 18.
2
Biomaterials for chimeric antigen receptor T cell engineering.
Acta Biomater. 2023 Aug;166:1-13. doi: 10.1016/j.actbio.2023.04.043. Epub 2023 May 2.
3
Cancer Immunotherapy Using CAR-T Cells: From the Research Bench to the Assembly Line.
Biotechnol J. 2018 Feb;13(2). doi: 10.1002/biot.201700097. Epub 2017 Oct 30.
4
Overcoming Challenges in Process Development of Cellular Therapies.
Curr Hematol Malig Rep. 2019 Aug;14(4):269-277. doi: 10.1007/s11899-019-00529-5.
5
Engineering Natural Killer Cells for Cancer Immunotherapy.
Mol Ther. 2017 Aug 2;25(8):1769-1781. doi: 10.1016/j.ymthe.2017.06.012. Epub 2017 Jun 28.
8
Engineering strategies to overcome the current roadblocks in CAR T cell therapy.
Nat Rev Clin Oncol. 2020 Mar;17(3):147-167. doi: 10.1038/s41571-019-0297-y. Epub 2019 Dec 17.
9
Challenges and Prospects of Chimeric Antigen Receptor T-cell Therapy for Metastatic Prostate Cancer.
Eur Urol. 2020 Mar;77(3):299-308. doi: 10.1016/j.eururo.2019.08.014. Epub 2019 Aug 28.
10
Chimeric Antigen Receptor T Cell Therapy: Challenges to Bench-to-Bedside Efficacy.
J Immunol. 2018 Jan 15;200(2):459-468. doi: 10.4049/jimmunol.1701155.

引用本文的文献

1
GCAD: a Computational Framework for Mammalian Genetic Program Computer-Aided Design.
bioRxiv. 2025 Aug 23:2025.08.23.671908. doi: 10.1101/2025.08.23.671908.
2
Automated, aseptic sampling with small-volume capacity from microbioreactors for cell therapy process analysis.
Front Bioeng Biotechnol. 2025 Jul 31;13:1612648. doi: 10.3389/fbioe.2025.1612648. eCollection 2025.
3
Strategies for Altering Delivery Technologies to Optimize CAR Therapy.
Int J Mol Sci. 2025 Mar 30;26(7):3206. doi: 10.3390/ijms26073206.
4
CAR-T-Cell-Based Cancer Immunotherapies: Potentials, Limitations, and Future Prospects.
J Clin Med. 2024 May 29;13(11):3202. doi: 10.3390/jcm13113202.
5
Metabolic priming of GD2 -CAR T cells during manufacturing promotes memory phenotypes while enhancing persistence.
Mol Ther Methods Clin Dev. 2024 Apr 10;32(2):101249. doi: 10.1016/j.omtm.2024.101249. eCollection 2024 Jun 13.
6
encapsulation and expansion of T and CAR-T cells using 3D synthetic thermo-responsive matrices.
RSC Adv. 2024 Apr 26;14(20):13734-13747. doi: 10.1039/d4ra01968g. eCollection 2024 Apr 25.
7
Implantable CAR T cell factories enhance solid tumor treatment.
Biomaterials. 2024 Jul;308:122580. doi: 10.1016/j.biomaterials.2024.122580. Epub 2024 Apr 15.
9
Challenges and new technologies in adoptive cell therapy.
J Hematol Oncol. 2023 Aug 18;16(1):97. doi: 10.1186/s13045-023-01492-8.
10
Label-free in vitro assays predict the potency of anti-disialoganglioside chimeric antigen receptor T-cell products.
Cytotherapy. 2023 Jun;25(6):670-682. doi: 10.1016/j.jcyt.2023.01.008. Epub 2023 Feb 26.

本文引用的文献

2
Advancing chimeric antigen receptor T cell therapy with CRISPR/Cas9.
Protein Cell. 2017 Sep;8(9):634-643. doi: 10.1007/s13238-017-0410-x. Epub 2017 Apr 22.
3
In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers.
Nat Nanotechnol. 2017 Aug;12(8):813-820. doi: 10.1038/nnano.2017.57. Epub 2017 Apr 17.
4
In Vivo Enrichment of Diabetogenic T Cells.
Diabetes. 2017 Aug;66(8):2220-2229. doi: 10.2337/db16-0946. Epub 2017 Apr 10.
6
Quality by control: Towards model predictive control of mammalian cell culture bioprocesses.
Biotechnol J. 2017 Jul;12(7). doi: 10.1002/biot.201600546. Epub 2017 Mar 31.
7
8
Global Manufacturing of CAR T Cell Therapy.
Mol Ther Methods Clin Dev. 2016 Dec 31;4:92-101. doi: 10.1016/j.omtm.2016.12.006. eCollection 2017 Mar 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验