Suppr超能文献

通过空心玻璃微球增强来提高镁的点火性能、硬度和压缩响应

Enhancing the Ignition, Hardness and Compressive Response of Magnesium by Reinforcing with Hollow Glass Microballoons.

作者信息

Manakari Vyasaraj, Parande Gururaj, Doddamani Mrityunjay, Gupta Manoj

机构信息

Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore.

Advanced Manufacturing Laboratory, Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal 575025, India.

出版信息

Materials (Basel). 2017 Aug 25;10(9):997. doi: 10.3390/ma10090997.

Abstract

Magnesium (Mg)/glass microballoons (GMB) metal matrix syntactic foams (1.47-1.67 g/cc) were synthesized using a disintegrated melt deposition (DMD) processing route. Such syntactic foams are of great interest to the scientific community as potential candidate materials for the ever-changing demands in automotive, aerospace, and marine sectors. The synthesized composites were evaluated for their microstructural, thermal, and compressive properties. Results showed that microhardness and the dimensional stability of pure Mg increased with increasing GMB content. The ignition response of these foams was enhanced by ~22 °C with a 25 wt % GMB addition to the Mg matrix. The authors of this work propose a new parameter, ignition factor, to quantify the superior ignition performance that the developed Mg foams exhibit. The room temperature compressive strengths of pure Mg increased with the addition of GMB particles, with Mg-25 wt % GMB exhibiting the maximum compressive yield strength (CYS) of 161 MPa and an ultimate compressive strength (UCS) of 232 MPa for a GMB addition of 5 wt % in Mg. A maximum failure strain of 37.7% was realized in Mg-25 wt % GMB foam. The addition of GMB particles significantly enhanced the energy absorption by ~200% prior to compressive failure for highest filler loading, as compared to pure Mg. Finally, microstructural changes in Mg owing to the presence of hollow GMB particles were elaborately discussed.

摘要

采用熔体破碎沉积(DMD)工艺路线合成了镁(Mg)/玻璃微球(GMB)金属基复合泡沫材料(密度为1.47 - 1.67 g/cc)。这种复合泡沫材料作为汽车、航空航天和船舶领域不断变化需求的潜在候选材料,引起了科学界的极大兴趣。对合成的复合材料进行了微观结构、热性能和压缩性能评估。结果表明,纯镁的显微硬度和尺寸稳定性随GMB含量的增加而提高。在镁基体中添加25 wt%的GMB后,这些泡沫材料的着火响应提高了约22°C。这项工作的作者提出了一个新参数——着火因子,以量化所开发的镁泡沫材料所表现出的优异着火性能。纯镁的室温压缩强度随GMB颗粒的添加而提高,对于在镁中添加5 wt%的GMB,Mg - 25 wt% GMB表现出最大压缩屈服强度(CYS)为161 MPa,极限压缩强度(UCS)为232 MPa。在Mg - 25 wt% GMB泡沫中实现了37.7%的最大失效应变。与纯镁相比,对于最高填料含量,在压缩失效前,GMB颗粒的添加显著提高了能量吸收约200%。最后,详细讨论了由于空心GMB颗粒的存在而导致的镁的微观结构变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8de7/5615652/2662da1b9b4d/materials-10-00997-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验