Suppr超能文献

铅笔束算法不适合用于肺部的质子剂量计算。

Pencil Beam Algorithms Are Unsuitable for Proton Dose Calculations in Lung.

机构信息

The Imaging and Radiation Oncology Core Houston Quality Assurance Center, The University of Texas MD Anderson Cancer Center, Houston, Texas.

The Imaging and Radiation Oncology Core Houston Quality Assurance Center, The University of Texas MD Anderson Cancer Center, Houston, Texas.

出版信息

Int J Radiat Oncol Biol Phys. 2017 Nov 1;99(3):750-756. doi: 10.1016/j.ijrobp.2017.06.003. Epub 2017 Jun 13.

Abstract

PURPOSE

To compare analytic and Monte Carlo-based algorithms for proton dose calculations in the lung, benchmarked against anthropomorphic lung phantom measurements.

METHODS AND MATERIALS

A heterogeneous anthropomorphic moving lung phantom has been irradiated at numerous proton therapy centers. At 5 centers the treatment plan could be calculated with both an analytic and Monte Carlo algorithm. The doses calculated in the treatment plans were compared with the doses delivered to the phantoms, which were measured using thermoluminescent dosimeters and film. Point doses were compared, as were planar doses using a gamma analysis.

RESULTS

The analytic algorithms overestimated the dose to the center of the target by an average of 7.2%, whereas the Monte Carlo algorithms were within 1.6% of the physical measurements on average. In some regions of the target volume, the analytic algorithm calculations differed from the measurement by up to 31% in the internal gross target volume (iGTV) (46% in the planning target volume), over-predicting the dose. All comparisons showed a region of at least 15% dose discrepancy within the iGTV between the analytic calculation and the measured dose. The Monte Carlo algorithm recalculations showed dramatically improved agreement with the measured doses, showing mean agreement within 4% for all cases and a maximum difference of 12% within the iGTV.

CONCLUSIONS

Analytic algorithms often do a poor job predicting proton dose in lung tumors, over-predicting the dose to the target by up to 46%, and should not be used unless extensive validation counters the consistent results of the present study. Monte Carlo algorithms showed dramatically improved agreement with physical measurements and should be implemented to better reflect actual delivered dose distributions.

摘要

目的

比较分析算法和基于蒙特卡罗算法的质子剂量计算方法,以人体肺部模体测量为基准。

方法与材料

使用多个质子治疗中心的不均匀异质运动人体肺部模体进行照射。在 5 个中心,治疗计划可以通过分析算法和蒙特卡罗算法进行计算。将治疗计划中计算的剂量与通过热释光剂量计和胶片测量的模体输送剂量进行比较。进行了点剂量比较,以及使用伽马分析进行了平面剂量比较。

结果

分析算法平均高估了靶心剂量 7.2%,而蒙特卡罗算法平均与物理测量值相差 1.6%。在靶区的某些区域,分析算法计算值与测量值相差高达 31%(内部大体靶区(iGTV)为 46%,计划靶区为 46%),过度预测剂量。所有比较均显示在 iGTV 内分析计算值与测量剂量之间存在至少 15%的剂量差异。蒙特卡罗算法重新计算显示出与测量剂量更显著的一致性,所有情况下平均一致性在 4%以内,iGTV 内最大差异为 12%。

结论

分析算法通常不能很好地预测肺部肿瘤中的质子剂量,高估靶区剂量高达 46%,除非广泛验证能抵消本研究的一致结果,否则不应使用。蒙特卡罗算法与物理测量结果显示出显著改善的一致性,应实施以更好地反映实际输送的剂量分布。

相似文献

1
Pencil Beam Algorithms Are Unsuitable for Proton Dose Calculations in Lung.铅笔束算法不适合用于肺部的质子剂量计算。
Int J Radiat Oncol Biol Phys. 2017 Nov 1;99(3):750-756. doi: 10.1016/j.ijrobp.2017.06.003. Epub 2017 Jun 13.

引用本文的文献

5
Analysis of Performance and Failure Modes of the IROC Proton Liver Phantom.IROC质子肝脏体模的性能与失效模式分析
Int J Part Ther. 2023 Jul 14;10(1):23-31. doi: 10.14338/IJPT-22-00043.1. eCollection 2023 Summer.
6
Quality improvements in radiation oncology clinical trials.放射肿瘤学临床试验中的质量改进。
Front Oncol. 2023 Jan 26;13:1015596. doi: 10.3389/fonc.2023.1015596. eCollection 2023.
8
Improving Proton Dose Calculation Accuracy by Using Deep Learning.利用深度学习提高质子剂量计算精度
Mach Learn Sci Technol. 2021 Mar;2(1). doi: 10.1088/2632-2153/abb6d5. Epub 2021 Apr 6.
10
The current status and shortcomings of stereotactic radiosurgery.立体定向放射外科的现状与不足
Neurooncol Adv. 2022 Apr 20;4(1):vdac058. doi: 10.1093/noajnl/vdac058. eCollection 2022 Jan-Dec.

本文引用的文献

5
6
Quantification of proton dose calculation accuracy in the lung.肺部质子剂量计算准确性的量化。
Int J Radiat Oncol Biol Phys. 2014 Jun 1;89(2):424-30. doi: 10.1016/j.ijrobp.2014.02.023. Epub 2014 Apr 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验