Suppr超能文献

神经元活动的体内磁记录

In Vivo Magnetic Recording of Neuronal Activity.

作者信息

Caruso Laure, Wunderle Thomas, Lewis Christopher Murphy, Valadeiro Joao, Trauchessec Vincent, Trejo Rosillo Josué, Amaral José Pedro, Ni Jianguang, Jendritza Patrick, Fermon Claude, Cardoso Susana, Freitas Paulo Peixeiro, Fries Pascal, Pannetier-Lecoeur Myriam

机构信息

SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay 91191 Gif-sur-Yvette Cedex, France.

Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt, Germany.

出版信息

Neuron. 2017 Sep 13;95(6):1283-1291.e4. doi: 10.1016/j.neuron.2017.08.012. Epub 2017 Aug 30.

Abstract

Neuronal activity generates ionic flows and thereby both magnetic fields and electric potential differences, i.e., voltages. Voltage measurements are widely used but suffer from isolating and smearing properties of tissue between source and sensor, are blind to ionic flow direction, and reflect the difference between two electrodes, complicating interpretation. Magnetic field measurements could overcome these limitations but have been essentially limited to magnetoencephalography (MEG), using centimeter-sized, helium-cooled extracranial sensors. Here, we report on in vivo magnetic recordings of neuronal activity from visual cortex of cats with magnetrodes, specially developed needle-shaped probes carrying micron-sized, non-cooled magnetic sensors based on spin electronics. Event-related magnetic fields inside the neuropil were on the order of several nanoteslas, informing MEG source models and efforts for magnetic field measurements through MRI. Though the signal-to-noise ratio is still inferior to electrophysiology, this proof of concept demonstrates the potential to exploit the fundamental advantages of magnetophysiology.

摘要

神经元活动会产生离子流,进而产生磁场和电势差,即电压。电压测量被广泛使用,但由于源与传感器之间组织的隔离和模糊特性而受到影响,对离子流方向不敏感,并且反映的是两个电极之间的差异,这使得解释变得复杂。磁场测量可以克服这些限制,但基本上仅限于使用厘米级、氦冷却的颅外传感器进行的脑磁图(MEG)。在这里,我们报告了使用磁电极对猫视觉皮层神经元活动进行的体内磁记录,磁电极是专门开发的针状探头,带有基于自旋电子学的微米级、非冷却磁传感器。神经毡内与事件相关的磁场约为几纳特斯拉,为MEG源模型以及通过MRI进行磁场测量的研究提供了信息。尽管信噪比仍低于电生理学,但这一概念验证证明了利用磁生理学基本优势的潜力。

相似文献

1
In Vivo Magnetic Recording of Neuronal Activity.神经元活动的体内磁记录
Neuron. 2017 Sep 13;95(6):1283-1291.e4. doi: 10.1016/j.neuron.2017.08.012. Epub 2017 Aug 30.
2
Magnetoencephalography With Optically Pumped He Magnetometers at Ambient Temperature.室温下采用光泵 He 磁力计的脑磁图。
IEEE Trans Med Imaging. 2019 Jan;38(1):90-98. doi: 10.1109/TMI.2018.2856367. Epub 2018 Jul 16.
7
Publication criteria for evoked magnetic fields of the human brain: a proposal.诱发人脑磁场的发表标准:一项建议。
Clin Neurophysiol. 2012 Nov;123(11):2116-21. doi: 10.1016/j.clinph.2012.06.008. Epub 2012 Jul 24.
9
Benchmarking for On-Scalp MEG Sensors.头皮脑磁图(MEG)传感器的基准测试
IEEE Trans Biomed Eng. 2017 Jun;64(6):1270-1276. doi: 10.1109/TBME.2016.2599177.

引用本文的文献

3
Functionalized Nanodiamonds for Targeted Neuronal Electromagnetic Signal Detection.功能化纳米金刚石用于靶向神经元电磁信号检测。
ACS Appl Mater Interfaces. 2024 Nov 6;16(44):60828-60841. doi: 10.1021/acsami.4c12462. Epub 2024 Oct 24.
4
Magnetic Detection of Neural Activity by Nanocoil Transducers.纳米线圈换能器的神经活动磁检测。
Nano Lett. 2024 Oct 23;24(42):13147-13152. doi: 10.1021/acs.nanolett.4c02784. Epub 2024 Sep 25.
5
Cellular and Molecular Effects of Magnetic Fields.磁场的细胞和分子效应。
Int J Mol Sci. 2024 Aug 17;25(16):8973. doi: 10.3390/ijms25168973.
8
Biomagnetism: The First Sixty Years.生物磁学:六十年发展历程
Sensors (Basel). 2023 Apr 23;23(9):4218. doi: 10.3390/s23094218.

本文引用的文献

6
On the photovoltaic effect in local field potential recordings.局部场电位记录中的光伏效应。
Neurophotonics. 2016 Jan;3(1):015002. doi: 10.1117/1.NPh.3.1.015002. Epub 2016 Jan 19.
7
Recording of brain activity across spatial scales.跨空间尺度记录大脑活动。
Curr Opin Neurobiol. 2015 Jun;32:68-77. doi: 10.1016/j.conb.2014.12.007. Epub 2014 Dec 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验