Caruso Laure, Wunderle Thomas, Lewis Christopher Murphy, Valadeiro Joao, Trauchessec Vincent, Trejo Rosillo Josué, Amaral José Pedro, Ni Jianguang, Jendritza Patrick, Fermon Claude, Cardoso Susana, Freitas Paulo Peixeiro, Fries Pascal, Pannetier-Lecoeur Myriam
SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay 91191 Gif-sur-Yvette Cedex, France.
Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt, Germany.
Neuron. 2017 Sep 13;95(6):1283-1291.e4. doi: 10.1016/j.neuron.2017.08.012. Epub 2017 Aug 30.
Neuronal activity generates ionic flows and thereby both magnetic fields and electric potential differences, i.e., voltages. Voltage measurements are widely used but suffer from isolating and smearing properties of tissue between source and sensor, are blind to ionic flow direction, and reflect the difference between two electrodes, complicating interpretation. Magnetic field measurements could overcome these limitations but have been essentially limited to magnetoencephalography (MEG), using centimeter-sized, helium-cooled extracranial sensors. Here, we report on in vivo magnetic recordings of neuronal activity from visual cortex of cats with magnetrodes, specially developed needle-shaped probes carrying micron-sized, non-cooled magnetic sensors based on spin electronics. Event-related magnetic fields inside the neuropil were on the order of several nanoteslas, informing MEG source models and efforts for magnetic field measurements through MRI. Though the signal-to-noise ratio is still inferior to electrophysiology, this proof of concept demonstrates the potential to exploit the fundamental advantages of magnetophysiology.
神经元活动会产生离子流,进而产生磁场和电势差,即电压。电压测量被广泛使用,但由于源与传感器之间组织的隔离和模糊特性而受到影响,对离子流方向不敏感,并且反映的是两个电极之间的差异,这使得解释变得复杂。磁场测量可以克服这些限制,但基本上仅限于使用厘米级、氦冷却的颅外传感器进行的脑磁图(MEG)。在这里,我们报告了使用磁电极对猫视觉皮层神经元活动进行的体内磁记录,磁电极是专门开发的针状探头,带有基于自旋电子学的微米级、非冷却磁传感器。神经毡内与事件相关的磁场约为几纳特斯拉,为MEG源模型以及通过MRI进行磁场测量的研究提供了信息。尽管信噪比仍低于电生理学,但这一概念验证证明了利用磁生理学基本优势的潜力。