Suppr超能文献

从果胶肠杆菌中提取的葡萄糖-1-磷酸尿苷酰转移酶:活性、结构和底物特异性。

Glucose-1-phosphate uridylyltransferase from Erwinia amylovora: Activity, structure and substrate specificity.

机构信息

Bioorganic Chemistry and Bio-Crystallography laboratory (B2Cl), Faculty of Science and Technology, Free University of Bolzano, 39100 Bolzano, Italy.

Bioorganic Chemistry and Bio-Crystallography laboratory (B2Cl), Faculty of Science and Technology, Free University of Bolzano, 39100 Bolzano, Italy.

出版信息

Biochim Biophys Acta Proteins Proteom. 2017 Nov;1865(11 Pt A):1348-1357. doi: 10.1016/j.bbapap.2017.08.015. Epub 2017 Aug 24.

Abstract

Erwinia amylovora, a Gram-negative plant pathogen, is the causal agent of Fire Blight, a contagious necrotic disease affecting plants belonging to the Rosaceae family, including apple and pear. E. amylovora is highly virulent and capable of rapid dissemination in orchards; effective control methods are still lacking. One of its most important pathogenicity factors is the exopolysaccharide amylovoran. Amylovoran is a branched polymer made by the repetition of units mainly composed of galactose, with some residues of glucose, glucuronic acid and pyruvate. E. amylovora glucose-1-phosphate uridylyltransferase (UDP-glucose pyrophosphorylase, EC 2.7.7.9) has a key role in amylovoran biosynthesis. This enzyme catalyses the production of UDP-glucose from glucose-1-phosphate and UTP, which the epimerase GalE converts into UDP-galactose, the main building block of amylovoran. We determined EaGalU kinetic parameters and substrate specificity with a range of sugar 1-phosphates. At time point 120min the enzyme catalysed conversion of the sugar 1-phosphate into the corresponding UDP-sugar reached 74% for N-acetyl-α-d-glucosamine 1-phosphate, 28% for α-d-galactose 1-phosphate, 0% for α-d-galactosamine 1-phosphate, 100% for α-d-xylose 1-phosphate, 100% for α-d-glucosamine 1-phosphate, 70% for α-d-mannose 1-phosphate, and 0% for α-d-galacturonic acid 1-phosphate. To explain our results we obtained the crystal structure of EaGalU and augmented our study by docking the different sugar 1-phosphates into EaGalU active site, providing both reliable models for substrate binding and enzyme specificity, and a rationale that explains the different activity of EaGalU on the sugar 1-phosphates used. These data demonstrate EaGalU potential as a biocatalyst for biotechnological purposes, as an alternative to the enzyme from Escherichia coli, besides playing an important role in E. amylovora pathogenicity.

摘要

果胶杆菌,一种革兰氏阴性植物病原体,是火疫病的病原体,火疫病是一种传染性坏死病,影响蔷薇科植物,包括苹果和梨。果胶杆菌具有高度毒性,能够在果园中迅速传播;目前仍然缺乏有效的控制方法。其最重要的致病性因素之一是胞外多糖果聚糖。果聚糖是由主要由半乳糖组成的单元重复组成的支链聚合物,其中一些残基为葡萄糖、葡萄糖醛酸和丙酮酸盐。果胶杆菌葡萄糖-1-磷酸尿苷酰转移酶(UDP-葡萄糖焦磷酸化酶,EC 2.7.7.9)在果聚糖生物合成中起关键作用。该酶催化葡萄糖-1-磷酸和 UTP 生成 UDP-葡萄糖,差向异构酶 GalE 将其转化为 UDP-半乳糖,这是果聚糖的主要结构单元。我们测定了一系列糖 1-磷酸的 EaGalU 动力学参数和底物特异性。在 120 分钟时,该酶将糖 1-磷酸转化为相应的 UDP-糖的转化率达到 N-乙酰-α-d-葡萄糖胺 1-磷酸 74%,α-d-半乳糖 1-磷酸 28%,α-d-半乳糖胺 1-磷酸 0%,α-d-木糖 1-磷酸 100%,α-d-葡萄糖胺 1-磷酸 100%,α-d-甘露糖 1-磷酸 70%,α-d-半乳糖醛酸 1-磷酸 0%。为了解释我们的结果,我们获得了 EaGalU 的晶体结构,并通过将不同的糖 1-磷酸对接入 EaGalU 的活性位点来扩展我们的研究,为底物结合和酶特异性提供了可靠的模型,并解释了 EaGalU 对所用糖 1-磷酸的不同活性的原理。这些数据表明 EaGalU 具有作为生物技术目的的生物催化剂的潜力,可作为大肠杆菌酶的替代物,同时在果胶杆菌的致病性中也起着重要作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验