Suppr超能文献

受自然启发的化学反应优化算法

Nature-Inspired Chemical Reaction Optimisation Algorithms.

作者信息

Siddique Nazmul, Adeli Hojjat

机构信息

School of Computing and Intelligent Systems, University of Ulster, Northland Road, Londonderry, BT48 7JL UK.

College of Engineering, The Ohio State University, 470 Hitchcock Hall, 2070 Neil Avenue, Columbus, OH 43210 USA.

出版信息

Cognit Comput. 2017;9(4):411-422. doi: 10.1007/s12559-017-9485-1. Epub 2017 Jun 17.

Abstract

Nature-inspired meta-heuristic algorithms have dominated the scientific literature in the areas of machine learning and cognitive computing paradigm in the last three decades. Chemical reaction optimisation (CRO) is a population-based meta-heuristic algorithm based on the principles of chemical reaction. A chemical reaction is seen as a process of transforming the reactants (or molecules) through a sequence of reactions into products. This process of transformation is implemented in the CRO algorithm to solve optimisation problems. This article starts with an overview of the chemical reactions and how it is applied to the optimisation problem. A review of CRO and its variants is presented in the paper. Guidelines from the literature on the effective choice of CRO parameters for solution of optimisation problems are summarised.

摘要

在过去三十年中,受自然启发的元启发式算法在机器学习和认知计算范式领域主导了科学文献。化学反应优化(CRO)是一种基于化学反应原理的基于种群的元启发式算法。化学反应被视为一个通过一系列反应将反应物(或分子)转化为产物的过程。在CRO算法中实现这种转化过程以解决优化问题。本文首先概述化学反应及其如何应用于优化问题。文中还对CRO及其变体进行了综述。总结了文献中关于有效选择CRO参数以解决优化问题的指导原则。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4f9/5552861/766829d5f1fc/12559_2017_9485_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验