Hassan Bryar A, Rashid Tarik A
Kurdistan Institution for Strategic Studies and Scientific Research, Sulaimani, Iraq.
Department of Computer Networks, Technical College of Informatics, Sulaimani Polytechnic University, Sulaimani, Iraq.
Data Brief. 2019 Dec 23;28:105046. doi: 10.1016/j.dib.2019.105046. eCollection 2020 Feb.
In this data article, we present the data used to evaluate the statistical success of the backtracking search optimisation algorithm (BSA) in comparison with the other four evolutionary optimisation algorithms. The data presented in this data article is related to the research article entitles 'Operational Framework for Recent Advances in Backtracking Search Optimisation Algorithm: A Systematic Review and Performance Evaluation' [1]. Three statistical tests conducted on BSA compared to differential evolution algorithm (DE), particle swarm optimisation (PSO), artificial bee colony (ABC), and firefly algorithm (FF). The tests are used to evaluate these mentioned algorithms and to determine which one could solve a specific optimisation problem concerning the statistical success of 16 benchmark problems taking several criteria into account. The criteria are initializing control parameters, dimension of the problems, their search space, and number of iterations needed to minimise a problem, the performance of the computer used to code the algorithms and their programming style, getting a balance on the effect of randomization, and the use of different type of optimisation problem in terms of hardness and their cohort. In addition, all the three tests include necessary statistical measures (Mean: mean-solution, S.D.: standard-deviation of mean-solution, Best: the best solution, Worst: the worst solution, Exec. Time: mean runtime in seconds, No. of succeeds: number of successful minimisation, and No. of Failure: number of failed minimisation).
在本数据文章中,我们展示了用于评估回溯搜索优化算法(BSA)与其他四种进化优化算法相比在统计方面成功与否的数据。本数据文章中呈现的数据与题为《回溯搜索优化算法最新进展的操作框架:系统综述与性能评估》[1]的研究文章相关。对BSA与差分进化算法(DE)、粒子群优化算法(PSO)、人工蜂群算法(ABC)和萤火虫算法(FF)进行了三项统计测试。这些测试用于评估上述算法,并确定哪一种算法能够在考虑多个标准的情况下解决关于16个基准问题统计成功性的特定优化问题。这些标准包括初始化控制参数、问题的维度、搜索空间、最小化问题所需的迭代次数、用于编写算法的计算机性能及其编程风格、在随机化影响方面取得平衡,以及在硬度及其类别方面使用不同类型的优化问题。此外,所有这三项测试都包括必要的统计度量(均值:平均解、标准差:平均解的标准差、最佳:最佳解、最差:最差解、执行时间:以秒为单位的平均运行时间、成功次数:成功最小化的次数,以及失败次数:失败最小化的次数)。