Chen Shizhe, Witten Daniela, Shojaie Ali
Department of Statistics, Columbia University, New York, NY 10027.
Department of Biostatistics and Statistics, University of Washington, Seattle, WA 98195.
Electron J Stat. 2017;11(1):1207-1234. doi: 10.1214/17-EJS1251. Epub 2017 Apr 11.
We consider the task of learning the structure of the graph underlying a mutually-exciting multivariate Hawkes process in the high-dimensional setting. We propose a simple and computationally inexpensive approach. Under a subset of the assumptions required for penalized estimation approaches to recover the graph, this edge screening approach has the sure screening property: with high probability, the screened edge set is a superset of the true edge set. Furthermore, the screened edge set is relatively small. We illustrate the performance of this new edge screening approach in simulation studies.
我们考虑在高维环境下学习相互激发的多元霍克斯过程所隐含的图结构这一任务。我们提出了一种简单且计算成本低廉的方法。在惩罚估计方法恢复图所需的部分假设下,这种边筛选方法具有确定筛选性质:以高概率,筛选出的边集是真实边集的超集。此外,筛选出的边集相对较小。我们在模拟研究中展示了这种新的边筛选方法的性能。