Halpin Peter F, De Boeck Paul
Department of Humanities and Social Science in the Professions, New York University, 246 Greene St, Office 316E, 10013-6677, New York, USA,
Psychometrika. 2013 Oct;78(4):793-814. doi: 10.1007/s11336-013-9329-1. Epub 2013 Feb 22.
We apply the Hawkes process to the analysis of dyadic interaction. The Hawkes process is applicable to excitatory interactions, wherein the actions of each individual increase the probability of further actions in the near future. We consider the representation of the Hawkes process both as a conditional intensity function and as a cluster Poisson process. The former treats the probability of an action in continuous time via non-stationary distributions with arbitrarily long historical dependency, while the latter is conducive to maximum likelihood estimation using the EM algorithm. We first outline the interpretation of the Hawkes process in the dyadic context, and then illustrate its application with an example concerning email transactions in the work place.
我们将霍克斯过程应用于二元互动分析。霍克斯过程适用于兴奋性互动,即每个个体的行为会增加近期进一步行动的概率。我们认为霍克斯过程既可以表示为条件强度函数,也可以表示为聚类泊松过程。前者通过具有任意长历史依赖性的非平稳分布来处理连续时间内行动的概率,而后者则有利于使用期望最大化(EM)算法进行最大似然估计。我们首先概述霍克斯过程在二元情境中的解释,然后通过一个关于工作场所电子邮件交易的示例来说明其应用。