Suppr超能文献

高维非平稳向量自回归模型中的联合结构突变检测与参数估计

Joint Structural Break Detection and Parameter Estimation in High-Dimensional Non-Stationary VAR Models.

作者信息

Safikhani Abolfazl, Shojaie Ali

机构信息

Department of Statistics, University of Florida.

Department of Biostatistics, University of Washington.

出版信息

J Am Stat Assoc. 2022;117(537):251-264. doi: 10.1080/01621459.2020.1770097. Epub 2020 Jul 7.

Abstract

Assuming stationarity is unrealistic in many time series applications. A more realistic alternative is to assume piecewise stationarity, where the model can change at potentially many change points. We propose a three-stage procedure for simultaneous estimation of change points and parameters of high-dimensional piecewise vector autoregressive (VAR) models. In the first step, we reformulate the change point detection problem as a high-dimensional variable selection one, and solve it using a penalized least square estimator with a total variation penalty. We show that the penalized estimation method over-estimates the number of change points, and propose a selection criterion to identify the change points. In the last step of our procedure, we estimate the VAR parameters in each of the segments. We prove that the proposed procedure consistently detects the number and location of change points, and provides consistent estimates of VAR parameters. The performance of the method is illustrated through several simulated and real data examples.

摘要

在许多时间序列应用中,假设平稳性是不现实的。一个更现实的替代方法是假设分段平稳性,即模型可以在潜在的多个变化点处发生变化。我们提出了一种三阶段程序,用于同时估计高维分段向量自回归(VAR)模型的变化点和参数。在第一步中,我们将变化点检测问题重新表述为一个高维变量选择问题,并使用具有总变差惩罚的惩罚最小二乘估计器来解决它。我们表明,惩罚估计方法会高估变化点的数量,并提出一种选择标准来识别变化点。在我们程序的最后一步中,我们估计每个分段中的VAR参数。我们证明,所提出的程序能够一致地检测变化点的数量和位置,并提供VAR参数的一致估计。通过几个模拟和实际数据示例说明了该方法的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f6a/10874880/cb63a701f2ef/nihms-1966056-f0001.jpg

相似文献

2
5
Regularized Joint Estimation of Related Vector Autoregressive Models.相关向量自回归模型的正则化联合估计
Comput Stat Data Anal. 2019 Nov;139:164-177. doi: 10.1016/j.csda.2019.05.007. Epub 2019 May 22.
7
Spectral Estimation Using Multitaper Whittle Methods with a Lasso Penalty.使用带套索惩罚的多窗Whittle方法进行谱估计。
IEEE Trans Signal Process. 2019 Oct 1;67(19):4992-5003. doi: 10.1109/tsp.2019.2932879. Epub 2019 Aug 2.

本文引用的文献

1
Network Reconstruction From High-Dimensional Ordinary Differential Equations.基于高维常微分方程的网络重构
J Am Stat Assoc. 2017;112(520):1697-1707. doi: 10.1080/01621459.2016.1229197. Epub 2017 Aug 7.
3
Joint Estimation of Multiple Graphical Models from High Dimensional Time Series.基于高维时间序列的多个图形模型联合估计
J R Stat Soc Series B Stat Methodol. 2016 Mar 1;78(2):487-504. doi: 10.1111/rssb.12123. Epub 2015 Jul 6.
5
The future of FMRI connectivity.功能磁共振成像连接的未来。
Neuroimage. 2012 Aug 15;62(2):1257-66. doi: 10.1016/j.neuroimage.2012.01.022. Epub 2012 Jan 10.
6
Sparse High Dimensional Models in Economics.经济学中的稀疏高维模型。
Annu Rev Econom. 2011 Sep;3:291-317. doi: 10.1146/annurev-economics-061109-080451.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验