Suppr超能文献

一种用于量化与不成比例性度量的置信区间相关的掩盖效应的数学框架。

A mathematical framework to quantify the masking effect associated with the confidence intervals of measures of disproportionality.

作者信息

Maignen François, Hauben Manfred, Dogné Jean-Michel

机构信息

Office of Health Economics, Southside, 105 Victoria Street, London SW1E 6QT, UK.

Pfizer Inc. New York, NY, USA.

出版信息

Ther Adv Drug Saf. 2017 Jul;8(7):231-244. doi: 10.1177/2042098617704143. Epub 2017 May 5.

Abstract

BACKGROUND

The lower bound of the 95% confidence interval of measures of disproportionality (Lower95CI) is widely used in signal detection. Masking is a statistical issue by which true signals of disproportionate reporting are hidden by the presence of other medicines. The primary objective of our study is to develop and validate a mathematical framework for assessing the masking effect of Lower95CI.

METHODS

We have developed our new algorithm based on the masking ratio (MR) developed for the measures of disproportionality. A MR for the Lower95CI (MRCI) is proposed. A simulation study to validate this algorithm was also conducted.

RESULTS

We have established the existence of a very close mathematical relation between MR and MRCI. For a given drug-event pair, the same product will be responsible for the highest masking effect with the measure of disproportionality and its Lower95CI. The extent of masking is likely to be very similar across the two methods. An important proportion of identical drug-event associations affected by the presence of an important masking effect is revealed by the unmasking exercise, whether the proportional reporting ratio (PRR) or its confidence interval are used.

CONCLUSION

The detection of the masking effect of Lower95CI can be automated. The real benefits of this unmasking in terms of new true-positive signals (rate of true-positive/false-positive) or time gained by the revealing of signals using this method have not been fully assessed. These benefits should be demonstrated in the context of prospective studies.

摘要

背景

不成比例性测量的95%置信区间下限(Lower95CI)在信号检测中被广泛使用。屏蔽是一个统计学问题,即其他药物的存在会掩盖不成比例报告的真实信号。我们研究的主要目的是开发并验证一个用于评估Lower95CI屏蔽效应的数学框架。

方法

我们基于为不成比例性测量开发的屏蔽率(MR)开发了新算法。提出了Lower95CI的MR(MRCI)。还进行了一项模拟研究以验证该算法。

结果

我们确定了MR与MRCI之间存在非常紧密的数学关系。对于给定的药物-事件对,同一产品对不成比例性测量及其Lower95CI的屏蔽效应最高。两种方法的屏蔽程度可能非常相似。无论使用比例报告率(PRR)还是其置信区间,通过去屏蔽操作都能揭示受重要屏蔽效应影响的相同药物-事件关联的很大一部分。

结论

Lower95CI屏蔽效应的检测可以自动化。这种去屏蔽在新的真阳性信号方面(真阳性/假阳性率)或使用该方法揭示信号所节省的时间方面的实际益处尚未得到充分评估。这些益处应在前瞻性研究中得到证明。

相似文献

2
A conceptual approach to the masking effect of measures of disproportionality.不均衡性测量的掩盖效应的概念性方法。
Pharmacoepidemiol Drug Saf. 2014 Feb;23(2):208-17. doi: 10.1002/pds.3530. Epub 2013 Nov 15.

引用本文的文献

6
What does the research say about androgen use and cerebrovascular events?关于雄激素的使用与脑血管事件,研究有何说法?
Ther Adv Drug Saf. 2018 May 8;9(8):439-455. doi: 10.1177/2042098618773318. eCollection 2018 Aug.

本文引用的文献

1
Does serious consequential masking exist? An update.
Pharmacoepidemiol Drug Saf. 2017 Jun;26(6):727-729. doi: 10.1002/pds.4209.
5
A conceptual approach to the masking effect of measures of disproportionality.不均衡性测量的掩盖效应的概念性方法。
Pharmacoepidemiol Drug Saf. 2014 Feb;23(2):208-17. doi: 10.1002/pds.3530. Epub 2013 Nov 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验