Département de Pharmacologie, Université Victor Segalen Bordeaux 2, Bordeaux, France.
Pharmacoepidemiol Drug Saf. 2010 Nov;19(11):1166-71. doi: 10.1002/pds.2022.
To study whether reports related to known drug-event associations could hinder the detection of new signals by increasing the detection thresholds when using disporportionality analyses in spontaneous reporting (SR) databases.
The French SR database (2005-2006 data) was used to test this hypothesis for the following events: bleeding, headache, hepatitis, myalgia, myocardial infarction, stroke, and toxic epidermal necrolysis (TEN). For each of these, using the Proportional Reporting Ratio (PRR) and the Reporting Odds Ratio (ROR), the number of cases needed to trigger a signal out of 50, 100, and 200 reports for a hypothetical newly introduced drug were computed before and after removing from the database reports involving drugs known to be associated with the event.
For bleeding and stroke, removing potentially competitive data resulted in a decrease of the number of cases needed to trigger a signal for a newly introduced drug for both PRR and ROR (e.g., from 9 to 4, and 5 to 3 cases out of 50 reports for bleeding and stroke, respectively using the PRR). They were not or only slightly modified for the other studied events.
Removing reports related to known drug-event associations could increase the sensitivity of signal detection in SR databases. This should be considered when using SR databases for signal detection as it could result in earlier identification of new drug-event associations.
研究在自发报告(SR)数据库中使用不平衡分析时,是否由于增加了检测阈值,与已知药物-事件关联性相关的报告会阻碍新信号的检测。
利用法国 SR 数据库(2005-2006 年数据),针对以下事件检验这一假设:出血、头痛、肝炎、肌痛、心肌梗死、中风和中毒性表皮坏死松解症(TEN)。针对每个事件,使用比例报告比值比(PRR)和报告比值比(ROR),计算出如果一种新引入的药物存在已知与该事件相关的药物报告,那么在数据库中删除这些报告后,触发信号所需的 50、100 和 200 份报告中,假设有多少例病例。
对于出血和中风,删除潜在的竞争性数据后,PRR 和 ROR 计算的触发新引入药物信号的病例数都有所减少(例如,PRR 计算的出血和中风病例数分别从 9 例减少到 4 例,从 5 例减少到 3 例)。对于其他研究的事件,它们的变化不明显或只有轻微的改变。
删除与已知药物-事件关联性相关的报告可能会提高 SR 数据库中信号检测的灵敏度。在使用 SR 数据库进行信号检测时,应该考虑到这一点,因为这可能会更早地识别出新的药物-事件关联性。