Computational Sciences Centre of Emphasis, Pfizer Global Research and Development, Cambridge, Massachusetts, USA.
Drug Saf. 2010 Dec 1;33(12):1117-33. doi: 10.2165/11584390-000000000-00000.
A phenomenon of 'masking' or 'cloaking' in pharmacovigilance data mining has been described, which can potentially cause signals of disproportionate reporting (SDRs) to be missed, particularly in pharmaceutical company databases. Masking has been predicted theoretically, observed anecdotally or studied to a limited extent in both pharmaceutical company and health authority databases, but no previous publication systematically assesses its occurrence in a large health authority database.
To explore the nature, extent and possible consequences of masking in the US FDA Adverse Event Reporting System (AERS) database by applying various experimental unmasking protocols to a set of drugs and events representing realistic pharmacovigilance analysis conditions.
This study employed AERS data from 2001 through 2005. For a set of 63 Medical Dictionary for Regulatory Activities (MedDRA®) Preferred Terms (PTs), disproportionality analysis was carried out with respect to all drugs included in the AERS database, using a previously described urn-model-based algorithm. We specifically sought masking in which drug removal induced an increase in the statistical representation of a drug-event combination (DEC) that resulted in the emergence of a new SDR. We performed a series of unmasking experiments selecting drugs for removal using rational statistical decision rules based on the requirement of a reporting ratio (RR) >1, top-ranked statistical unexpectedness (SU) and relatedness as reflected in the WHO Anatomical Therapeutic Chemical level 4 (ATC4) grouping. In order to assess the possible extent of residual masking we performed two supplemental purely empirical analyses on a limited subset of data. This entailed testing every drug and drug group to determine which was most influential in uncovering masked SDRs. We assessed the strength of external evidence for a causal association for a small number of masked SDRs involving a subset of 29 drugs for which level of evidence adjudication was available from a previous study.
The original disproportionality analysis identified 8719 SDRs for the 63 PTs. The SU-based unmasking protocols generated variable numbers of masked SDRs ranging from 38 to 156, representing a 0.43-1.8% increase over the number of baseline SDRs. A significant number of baseline SDRs were also lost in the course of our experiments. The trend in the number of gained SDRs per report removed was inversely related to the number of lost SDRs per protocol. Both the number and nature of the reports removed influenced the number of gained SDRs observed. The purely empirical protocols unmasked up to ten times as many SDRs. None of the masked SDRs had strong external evidence supporting a causal association. Most involved associations for which there was no external supporting evidence or were in the original product label. For two masked SDRs, there was external evidence of a possible causal association.
We documented masking in the FDA AERS database. Attempts at unmasking SDRs using practically implementable protocols produced only small changes in the output of SDRs in our analysis. This is undoubtedly related to the large size and diversity of the database, but the complex interdependencies between drugs and events in authentic spontaneous reporting system (SRS) databases, and the impact of measures of statistical variability that are typically used in real-world disproportionality analysis, may be additional factors that constrain the discovery of masked SDRs and which may also operate in pharmaceutical company databases. Empirical determination of the most influential drugs may uncover significantly more SDRs than protocols based on predetermined statistical selection rules but are impractical except possibly for evaluating specific events. Routine global exercises to elicit masking, especially in large health authority databases are not justified based on results available to date. Exercises to elicit unmasking should be driven by prior knowledge or obvious data imbalances.
药物警戒数据挖掘中存在一种“掩蔽”或“伪装”现象,可能会导致不成比例报告信号(SDR)被遗漏,尤其是在制药公司数据库中。在制药公司和卫生当局的数据库中,理论上已经预测到了掩蔽现象,也有一些轶事证据或有限的研究,但以前没有出版物系统地评估其在大型卫生当局数据库中的发生情况。
通过应用各种实验性的解掩蔽方案,对一组代表实际药物警戒分析情况的药物和事件,来探索美国 FDA 不良事件报告系统(AERS)数据库中掩蔽的性质、程度和可能的后果。
本研究使用了 2001 年至 2005 年的 AERS 数据。对于一组 63 个监管活动医学词典(MedDRA®)首选术语(PTs),使用以前描述的 urn 模型为基础的算法,对 AERS 数据库中包含的所有药物进行了不成比例性分析。我们特别寻求在药物去除后导致药物事件组合(DEC)的统计代表性增加的掩蔽,从而导致新的 SDR 的出现。我们进行了一系列的解掩蔽实验,根据报告率(RR)>1、排名最高的统计意外性(SU)和 WHO 解剖治疗化学 4 级(ATC4)分组反映的相关性等合理的统计决策规则选择要去除的药物。为了评估可能存在的残留掩蔽程度,我们对有限的数据子集进行了两项补充的纯粹经验分析。这需要测试每一种药物和药物组,以确定哪种药物对揭示被掩蔽的 SDRs 最有影响。我们评估了一小部分涉及 29 种药物的被掩蔽的 SDRs 的因果关系的外部证据的强度,这些药物的证据级别评定可从以前的研究中获得。
原始的不成比例性分析确定了 63 个 PT 中的 8719 个 SDRs。基于 SU 的解掩蔽方案生成了数量不等的掩蔽 SDRs,范围从 38 到 156 个,与基线 SDRs 的数量相比增加了 0.43-1.8%。在我们的实验过程中,也丢失了相当数量的基线 SDRs。每删除一份报告所获得的 SDRs 的数量与每一个方案丢失的 SDRs 的数量呈反比关系。所删除的报告的数量和性质都影响了观察到的获得的 SDRs 的数量。纯粹的经验性方案可以解掩蔽多达十倍的 SDRs。没有一个被掩蔽的 SDR 有支持因果关系的强有力的外部证据。大多数涉及的关联都没有外部支持证据,或者是在原始产品标签中。对于两个被掩蔽的 SDRs,有外部证据表明可能存在因果关系。
我们记录了 FDA AERS 数据库中的掩蔽现象。使用实际可实现的方案尝试解掩蔽 SDRs,只会对我们分析中的 SDRs 的输出产生微小的变化。这无疑与数据库的规模大和多样性有关,但在真实的自发报告系统(SRS)数据库中,药物和事件之间的复杂相互依存关系,以及在实际的不成比例性分析中通常使用的统计变异性度量的影响,可能是限制发现被掩蔽的 SDRs 的其他因素,这些因素也可能在制药公司的数据库中起作用。基于预定的统计选择规则的方案,确定最有影响的药物可能会发现更多的 SDRs,但除了评估特定的事件外,这些方案是不切实际的。根据目前可用的结果,没有理由对大型卫生当局数据库进行常规的全球掩蔽探测练习。解掩蔽的练习应该由事先的知识或明显的数据不平衡驱动。