Vatamanu Jenel, Borodin Oleg
Electrochemistry Branch, Sensors and Electron Devices Directorate, U.S. Army Research Laboratory , 2800 Powder Mill Road, Adelphi, Maryland 20703, United States.
J Phys Chem Lett. 2017 Sep 21;8(18):4362-4367. doi: 10.1021/acs.jpclett.7b01879. Epub 2017 Aug 30.
Development of safe aqueous batteries and supercapacitors critically relies on expanding the electrolyte electrochemical stability window. A novel mechanism responsible for widening the electrochemical stability window of water-in-salt electrolytes (WiSEs) compared to conventional salt-in-water electrolytes is suggested based on molecular dynamics (MD) simulations of the electrolyte-electrode interface. Water exclusion from the interfacial layer at the positive electrode provided additional kinetic protection that delayed the onset of the oxygen evolution reactions. The interfacial structure of a WiSE at negative electrodes near the potential of zero charge clarified why the recently discovered passivation layers formed in WiSEs are robust. The onset of water accumulation at potentials below 1.5 V vs Li/Li leads to formation of water-rich nanodomains at the negative electrode, limiting the robustness of the WiSE. Unexpectedly, the bis(trifluoromethanesulfonyl)imide anion adsorbed and trifluoromethanesulfonate desorbed with positive electrode polarization, demonstrating selective anion partitioning in the double layer.
安全水系电池和超级电容器的发展严重依赖于扩大电解质的电化学稳定窗口。基于电解质-电极界面的分子动力学(MD)模拟,提出了一种与传统水盐电解质相比能拓宽盐包水电解质(WiSEs)电化学稳定窗口的新机制。在正极处,界面层排斥水提供了额外的动力学保护,延迟了析氧反应的开始。在接近零电荷电位的负极处,WiSE的界面结构阐明了为什么最近在WiSEs中发现的钝化层很稳定。相对于Li/Li,在低于1.5 V的电位下开始积水,导致在负极形成富水纳米域,限制了WiSE的稳定性。出乎意料的是,双(三氟甲磺酰)亚胺阴离子在正极极化时吸附,而三氟甲磺酸盐解吸,表明在双层中存在选择性阴离子分配。