Suppr超能文献

一种用于低浓度水系钠离子电池的分子筛中间相

A Molecular-Sieving Interphase Towards Low-Concentrated Aqueous Sodium-Ion Batteries.

作者信息

Liu Tingting, Wu Han, Wang Hao, Jiao Yiran, Du Xiaofan, Wang Jinzhi, Fu Guangying, Zhang Yaojian, Zhao Jingwen, Cui Guanglei

机构信息

Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, People's Republic of China.

Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.

出版信息

Nanomicro Lett. 2024 Mar 4;16(1):144. doi: 10.1007/s40820-024-01340-5.

Abstract

Aqueous sodium-ion batteries are known for poor rechargeability because of the competitive water decomposition reactions and the high electrode solubility. Improvements have been reported by salt-concentrated and organic-hybridized electrolyte designs, however, at the expense of cost and safety. Here, we report the prolonged cycling of ASIBs in routine dilute electrolytes by employing artificial electrode coatings consisting of NaX zeolite and NaOH-neutralized perfluorinated sulfonic polymer. The as-formed composite interphase exhibits a molecular-sieving effect jointly played by zeolite channels and size-shrunken ionic domains in the polymer matrix, which enables high rejection of hydrated Na ions while allowing fast dehydrated Na permeance. Applying this coating to electrode surfaces expands the electrochemical window of a practically feasible 2 mol kg sodium trifluoromethanesulfonate aqueous electrolyte to 2.70 V and affords NaMnFe(CN)//NaTi(PO) full cells with an unprecedented cycling stability of 94.9% capacity retention after 200 cycles at 1 C. Combined with emerging electrolyte modifications, this molecular-sieving interphase brings amplified benefits in long-term operation of ASIBs.

摘要

水系钠离子电池因竞争性的水分解反应和高电极溶解度而以可充电性差著称。尽管通过浓盐和有机混合电解质设计已有改进报道,但这是以成本和安全性为代价的。在此,我们报道通过使用由NaX沸石和NaOH中和的全氟磺酸聚合物组成的人工电极涂层,在常规稀电解质中实现水系钠离子电池的长循环性能。形成的复合界面相表现出由沸石通道和聚合物基质中尺寸缩小的离子域共同发挥的分子筛效应,这使得对水合钠离子具有高排斥性,同时允许快速的脱水钠离子渗透。将这种涂层应用于电极表面,可将实际可行的2 mol kg三氟甲磺酸钠水系电解质的电化学窗口扩展至2.70 V,并为NaMnFe(CN)//NaTi(PO)全电池提供前所未有的循环稳定性,在1 C下200次循环后容量保持率达94.9%。结合新兴的电解质改性,这种分子筛界面相在水系钠离子电池的长期运行中带来了更大的益处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3886/10912067/21f38ec1bacd/40820_2024_1340_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验