Suppr超能文献

负极极化下高浓度水电解质的非常规界面水结构。

Unconventional interfacial water structure of highly concentrated aqueous electrolytes at negative electrode polarizations.

作者信息

Li Chao-Yu, Chen Ming, Liu Shuai, Lu Xinyao, Meng Jinhui, Yan Jiawei, Abruña Héctor D, Feng Guang, Lian Tianquan

机构信息

Department of Chemistry, Emory University, Atlanta, GA, 30322, USA.

State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.

出版信息

Nat Commun. 2022 Sep 10;13(1):5330. doi: 10.1038/s41467-022-33129-8.

Abstract

Water-in-salt electrolytes are an appealing option for future electrochemical energy storage devices due to their safety and low toxicity. However, the physicochemical interactions occurring at the interface between the electrode and the water-in-salt electrolyte are not yet fully understood. Here, via in situ Raman spectroscopy and molecular dynamics simulations, we investigate the electrical double-layer structure occurring at the interface between a water-in-salt electrolyte and an Au(111) electrode. We demonstrate that most interfacial water molecules are bound with lithium ions and have zero, one, or two hydrogen bonds to feature three hydroxyl stretching bands. Moreover, the accumulation of lithium ions on the electrode surface at large negative polarizations reduces the interfacial field to induce an unusual "hydrogen-up" structure of interfacial water and blue shift of the hydroxyl stretching frequencies. These physicochemical behaviours are quantitatively different from aqueous electrolyte solutions with lower concentrations. This atomistic understanding of the double-layer structure provides key insights for designing future aqueous electrolytes for electrochemical energy storage devices.

摘要

盐包水电解质因其安全性和低毒性,是未来电化学储能装置的一个有吸引力的选择。然而,电极与盐包水电解质之间界面处发生的物理化学相互作用尚未完全理解。在此,通过原位拉曼光谱和分子动力学模拟,我们研究了盐包水电解质与Au(111)电极之间界面处发生的双电层结构。我们证明,大多数界面水分子与锂离子结合,并具有零个、一个或两个氢键,以呈现三个羟基伸缩带。此外,在大的负极化下锂离子在电极表面的积累会降低界面电场,从而诱导界面水出现不寻常的“氢上”结构以及羟基伸缩频率的蓝移。这些物理化学行为在定量上与较低浓度的水电解质溶液不同。这种对双电层结构的原子层面理解为设计未来用于电化学储能装置的水性电解质提供了关键见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e36/9464189/c5a4715a91f3/41467_2022_33129_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验