Suppr超能文献

用于“同一健康”倡议的植物制造疫苗和试剂。

Plant-made vaccines and reagents for the One Health initiative.

机构信息

a Biopharming Research Unit, Department of Molecular & Cell Biology , University of Cape Town; Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town , Cape Town , South Africa.

出版信息

Hum Vaccin Immunother. 2017 Dec 2;13(12):2912-2917. doi: 10.1080/21645515.2017.1356497. Epub 2017 Aug 28.

Abstract

The One Health initiative is increasingly becoming a prominent discussion topic in animal and human health, with its focus on prevention of spread of zoonotic diseases, both in animals, and from animals to humans. An important part of One Health is that diagnostics and vaccines for diseases may be the same thing - and be used for both humans and animals. One potential problem standing in the way of wider adoption of One Health principles, though, is that use of conventional cell fermentation systems for production of the recombinant proteins that could be used as diagnostics or vaccines is often expensive and is not easily scalable. A solution to this may be the use of plants or plant cells as bioreactors: molecular farming, or the production of biologics in plants, is now a well-established science with many proofs of principle and important proofs of efficacy for especially animal vaccines. This review discusses how molecular farming could enable important advances in One Health, using as examples plant-made vacccines, reagents and therapeutics for influenza viruses, ebolaviruses, rabies virus, bunyaviruses and flaviviruses.

摘要

“同一健康”倡议越来越成为动物和人类健康领域的热门话题,其重点是预防人畜共患疾病的传播,包括在动物和从动物到人。“同一健康”的一个重要部分是,疾病的诊断和疫苗可能是一回事,并且可以同时用于人类和动物。然而,在更广泛地采用“同一健康”原则方面存在一个潜在问题,即使用传统的细胞发酵系统生产可作为诊断或疫苗的重组蛋白通常成本高昂且不易扩展。解决这个问题的方法可能是使用植物或植物细胞作为生物反应器:分子农业,或在植物中生产生物制剂,现在是一个成熟的科学,有许多原理证明,特别是对动物疫苗的功效证明。本文讨论了分子农业如何能够通过使用植物制造的流感病毒、埃博拉病毒、狂犬病病毒、布尼亚病毒和黄病毒疫苗、试剂和治疗药物等例子,在“同一健康”中实现重要进展。

相似文献

1
Plant-made vaccines and reagents for the One Health initiative.
Hum Vaccin Immunother. 2017 Dec 2;13(12):2912-2917. doi: 10.1080/21645515.2017.1356497. Epub 2017 Aug 28.
2
Plant-based vaccines against viruses.
Virol J. 2014 Dec 3;11:205. doi: 10.1186/s12985-014-0205-0.
3
Plant-made pharmaceuticals for the prevention and treatment of autoimmune diseases: where are we?
Expert Rev Vaccines. 2010 Aug;9(8):957-69. doi: 10.1586/erv.10.82.
4
Virus-like particles produced in plants as potential vaccines.
Expert Rev Vaccines. 2013 Feb;12(2):211-24. doi: 10.1586/erv.12.147.
5
Plant-made vaccines for humans and animals.
Plant Biotechnol J. 2010 Jun;8(5):620-37. doi: 10.1111/j.1467-7652.2010.00507.x. Epub 2010 Mar 11.
6
The role of plant expression platforms in biopharmaceutical development: possibilities for the future.
Expert Rev Vaccines. 2019 Dec;18(12):1301-1308. doi: 10.1080/14760584.2019.1704264. Epub 2019 Dec 26.
8
Plant-made vaccine antigens and biopharmaceuticals.
Trends Plant Sci. 2009 Dec;14(12):669-79. doi: 10.1016/j.tplants.2009.09.009. Epub 2009 Oct 14.
9
Human papillomavirus vaccines in plants.
Expert Rev Vaccines. 2010 Aug;9(8):913-24. doi: 10.1586/erv.10.84.
10
[Transgenic plants as a medicine production system].
Tanpakushitsu Kakusan Koso. 2000 Mar;45(4):607-13.

引用本文的文献

1
Approaches to Next-Generation Capripoxvirus and Monkeypox Virus Vaccines.
Viruses. 2025 Jan 27;17(2):186. doi: 10.3390/v17020186.
2
Exigency of Plant-Based Vaccine against COVID-19 Emergence as Pandemic Preparedness.
Vaccines (Basel). 2023 Aug 9;11(8):1347. doi: 10.3390/vaccines11081347.
7
Transient Expression of Glycosylated SARS-CoV-2 Antigens in .
Plants (Basel). 2022 Apr 18;11(8):1093. doi: 10.3390/plants11081093.
8
Transient recombinant expression of highly immunogenic and in .
Biotechnol Rep (Amst). 2021 Dec 29;33:e00699. doi: 10.1016/j.btre.2021.e00699. eCollection 2022 Mar.
9
Integrating plant molecular farming and materials research for next-generation vaccines.
Nat Rev Mater. 2022;7(5):372-388. doi: 10.1038/s41578-021-00399-5. Epub 2021 Dec 6.
10
Long-Lasting Stable Expression of Human LL-37 Antimicrobial Peptide in Transgenic Barley Plants.
Antibiotics (Basel). 2021 Jul 23;10(8):898. doi: 10.3390/antibiotics10080898.

本文引用的文献

1
A dose-response study in mice of a tetravalent vaccine candidate composed of domain III-capsid proteins from dengue viruses.
Arch Virol. 2017 Aug;162(8):2247-2256. doi: 10.1007/s00705-017-3360-y. Epub 2017 Apr 9.
2
Expression of the VP40 antigen from the Zaire ebolavirus in tobacco plants.
Planta. 2017 Jul;246(1):123-132. doi: 10.1007/s00425-017-2689-5. Epub 2017 Apr 7.
3
Synthetic plant virology for nanobiotechnology and nanomedicine.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017 Jul;9(4). doi: 10.1002/wnan.1447. Epub 2017 Jan 11.
5
The Impact of the Newly Licensed Dengue Vaccine in Endemic Countries.
PLoS Negl Trop Dis. 2016 Dec 21;10(12):e0005179. doi: 10.1371/journal.pntd.0005179. eCollection 2016 Dec.
6
Serological and Virological Evidence of Crimean-Congo Haemorrhagic Fever Virus Circulation in the Human Population of Borno State, Northeastern Nigeria.
PLoS Negl Trop Dis. 2016 Dec 7;10(12):e0005126. doi: 10.1371/journal.pntd.0005126. eCollection 2016 Dec.
7
Plant-produced anti-dengue virus monoclonal antibodies exhibit reduced antibody-dependent enhancement of infection activity.
J Gen Virol. 2016 Dec;97(12):3280-3290. doi: 10.1099/jgv.0.000635. Epub 2016 Oct 20.
8
Association of Rift Valley fever virus infection with miscarriage in Sudanese women: a cross-sectional study.
Lancet Glob Health. 2016 Nov;4(11):e864-e871. doi: 10.1016/S2214-109X(16)30176-0. Epub 2016 Sep 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验