Suppr超能文献

TP53 突变通过失活机制驱动神经内分泌肺癌,并对化疗反应产生功能获得效应。

TRP53 Mutants Drive Neuroendocrine Lung Cancer Through Loss-of-Function Mechanisms with Gain-of-Function Effects on Chemotherapy Response.

机构信息

Division of Pathology & Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.

University of Cincinnati College of Medicine, Cincinnati, Ohio.

出版信息

Mol Cancer Ther. 2017 Dec;16(12):2913-2926. doi: 10.1158/1535-7163.MCT-17-0353. Epub 2017 Aug 28.

Abstract

Lung cancer is the leading cause of cancer-related deaths with small-cell lung cancer (SCLC) as the most aggressive subtype. Preferential occurrence of TP53 missense mutations rather than loss implicates a selective advantage for TP53-mutant expression in SCLC pathogenesis. We show that lung epithelial expression of R270H and R172H (R273H and R175H in humans), common TRP53 mutants in lung cancer, combined with RB1 loss selectively results in two subtypes of neuroendocrine carcinoma, SCLC and large cell neuroendocrine carcinoma (LCNEC). Tumor initiation and progression occur in a remarkably consistent time frame with short latency and uniform progression to lethal metastatic disease by 7 months. R270H or R172H expression and TRP53 loss result in similar phenotypes demonstrating that TRP53 mutants promote lung carcinogenesis through loss-of-function and not gain-of-function mechanisms. Tumor responses to targeted and cytotoxic therapeutics were discordant in mice and corresponding tumor cell cultures demonstrating need to assess therapeutic response at the organismal level. Rapamycin did not have therapeutic efficacy in the mouse model despite inhibiting mTOR signaling and markedly suppressing tumor cell growth in culture. In contrast, cisplatin/etoposide treatment using a patient regimen prolonged survival with development of chemoresistance recapitulating human responses. R270H, but not R172H, expression conferred gain-of-function activity in attenuating chemotherapeutic efficacy. These data demonstrate a causative role for TRP53 mutants in development of chemoresistant lung cancer, and provide tractable preclinical models to test novel therapeutics for refractory disease. .

摘要

肺癌是癌症相关死亡的主要原因,小细胞肺癌(SCLC)是最具侵袭性的亚型。TP53 错义突变的优先发生而非缺失暗示了 TP53 突变在 SCLC 发病机制中的选择性优势。我们表明,肺上皮中 R270H 和 R172H(人类中的 R273H 和 R175H)的表达,常见的肺癌中的 TRP53 突变,与 RB1 缺失相结合,选择性地导致两种神经内分泌癌亚型,即 SCLC 和大细胞神经内分泌癌(LCNEC)。肿瘤的起始和进展发生在一个非常一致的时间框架内,潜伏期短,通过 7 个月统一进展为致命的转移性疾病。R270H 或 R172H 的表达和 TRP53 的缺失导致类似的表型,表明 TRP53 突变体通过功能丧失而不是功能获得机制促进肺癌发生。靶向和细胞毒性治疗的肿瘤反应在小鼠和相应的肿瘤细胞培养物中不一致,表明需要在机体水平上评估治疗反应。尽管雷帕霉素抑制 mTOR 信号并显著抑制培养中的肿瘤细胞生长,但在小鼠模型中没有治疗效果。相比之下,使用患者方案的顺铂/依托泊苷治疗延长了生存时间,并产生了化学抗性,再现了人类的反应。R270H 的表达,但不是 R172H 的表达,赋予了削弱化疗效果的功能获得活性。这些数据表明 TRP53 突变体在耐药性肺癌的发展中起因果作用,并提供了可行的临床前模型来测试针对难治性疾病的新型治疗方法。

相似文献

1
TRP53 Mutants Drive Neuroendocrine Lung Cancer Through Loss-of-Function Mechanisms with Gain-of-Function Effects on Chemotherapy Response.
Mol Cancer Ther. 2017 Dec;16(12):2913-2926. doi: 10.1158/1535-7163.MCT-17-0353. Epub 2017 Aug 28.
3
[Establishment of A Patient-derived Xenotransplantation Animal Model for Small Cell Lung Cancer and Drug Resistance Model].
Zhongguo Fei Ai Za Zhi. 2019 Jan 20;22(1):6-14. doi: 10.3779/j.issn.1009-3419.2019.01.03.
4
Differential development of large-cell neuroendocrine or small-cell lung carcinoma upon inactivation of 4 tumor suppressor genes.
Proc Natl Acad Sci U S A. 2019 Oct 29;116(44):22300-22306. doi: 10.1073/pnas.1821745116. Epub 2019 Oct 14.
7
Specific expression of OATPs in primary small cell lung cancer (SCLC) cells as novel biomarkers for diagnosis and therapy.
Cancer Lett. 2015 Jan 28;356(2 Pt B):517-24. doi: 10.1016/j.canlet.2014.09.025. Epub 2014 Oct 6.
9
Unexpected favorable outcome to etoposide and cisplatin in a small cell lung cancer transformed patient: a case report.
Cancer Biol Ther. 2019;20(9):1172-1175. doi: 10.1080/15384047.2019.1617561. Epub 2019 Jun 4.

引用本文的文献

1
Cell cycle duration determines oncogenic transformation capacity.
Nature. 2025 Apr 30. doi: 10.1038/s41586-025-08935-x.
2
Strategies to Target Chemoradiotherapy Resistance in Small Cell Lung Cancer.
Cancers (Basel). 2024 Oct 10;16(20):3438. doi: 10.3390/cancers16203438.
3
Targeting Oncogenic Mutant p53 and BCL-2 for Small Cell Lung Cancer Treatment.
Int J Mol Sci. 2023 Aug 23;24(17):13082. doi: 10.3390/ijms241713082.
4
Binary pan-cancer classes with distinct vulnerabilities defined by pro- or anti-cancer YAP/TEAD activity.
Cancer Cell. 2021 Aug 9;39(8):1115-1134.e12. doi: 10.1016/j.ccell.2021.06.016. Epub 2021 Jul 21.
6
Characterizing TP53 mutations in ovarian carcinomas with and without concurrent BRCA1 or BRCA2 mutations.
Gynecol Oncol. 2021 Mar;160(3):786-792. doi: 10.1016/j.ygyno.2020.12.007. Epub 2020 Dec 26.
7
Neuroendocrine Lung Cancer Mouse Models: An Overview.
Cancers (Basel). 2020 Dec 22;13(1):14. doi: 10.3390/cancers13010014.
8
Differential development of large-cell neuroendocrine or small-cell lung carcinoma upon inactivation of 4 tumor suppressor genes.
Proc Natl Acad Sci U S A. 2019 Oct 29;116(44):22300-22306. doi: 10.1073/pnas.1821745116. Epub 2019 Oct 14.
9
Tumor heterogeneity in small cell lung cancer defined and investigated in pre-clinical mouse models.
Transl Lung Cancer Res. 2018 Feb;7(1):21-31. doi: 10.21037/tlcr.2018.01.15.

本文引用的文献

1
Cancer Statistics, 2017.
CA Cancer J Clin. 2017 Jan;67(1):7-30. doi: 10.3322/caac.21387. Epub 2017 Jan 5.
3
Genomic Profiling of Large-Cell Neuroendocrine Carcinoma of the Lung.
Clin Cancer Res. 2017 Feb 1;23(3):757-765. doi: 10.1158/1078-0432.CCR-16-0355. Epub 2016 Aug 9.
4
Identification and Targeting of Long-Term Tumor-Propagating Cells in Small Cell Lung Cancer.
Cell Rep. 2016 Jul 19;16(3):644-56. doi: 10.1016/j.celrep.2016.06.021. Epub 2016 Jun 30.
5
TP53 Variations in Human Cancers: New Lessons from the IARC TP53 Database and Genomics Data.
Hum Mutat. 2016 Sep;37(9):865-76. doi: 10.1002/humu.23035. Epub 2016 Jul 8.
7
Large Cell Neuroendocrine Carcinoma of the Lung: Clinico-Pathologic Features, Treatment, and Outcomes.
Clin Lung Cancer. 2016 Sep;17(5):e121-e129. doi: 10.1016/j.cllc.2016.01.003. Epub 2016 Jan 21.
8
From Mice to Men and Back: An Assessment of Preclinical Model Systems for the Study of Lung Cancers.
J Thorac Oncol. 2016 Mar;11(3):287-99. doi: 10.1016/j.jtho.2015.10.009. Epub 2015 Dec 24.
9
Mutant p53: Multiple Mechanisms Define Biologic Activity in Cancer.
Front Oncol. 2015 Nov 11;5:249. doi: 10.3389/fonc.2015.00249. eCollection 2015.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验