Suppr超能文献

与人类遗传性痛觉缺失相关基因的综合计算分析。药物重新利用视角。

Integrated Computational Analysis of Genes Associated with Human Hereditary Insensitivity to Pain. A Drug Repurposing Perspective.

作者信息

Lötsch Jörn, Lippmann Catharina, Kringel Dario, Ultsch Alfred

机构信息

Institute of Clinical Pharmacology, Goethe-UniversityFrankfurt am Main, Germany.

Fraunhofer Institute of Molecular Biology and Applied Ecology-Project Group, Translational Medicine and Pharmacology (IME-TMP)Frankfurt am Main, Germany.

出版信息

Front Mol Neurosci. 2017 Aug 8;10:252. doi: 10.3389/fnmol.2017.00252. eCollection 2017.

Abstract

Genes causally involved in human insensitivity to pain provide a unique molecular source of studying the pathophysiology of pain and the development of novel analgesic drugs. The increasing availability of "big data" enables novel research approaches to chronic pain while also requiring novel techniques for data mining and knowledge discovery. We used machine learning to combine the knowledge about = 20 genes causally involved in human hereditary insensitivity to pain with the knowledge about the functions of thousands of genes. An integrated computational analysis proposed that among the functions of this set of genes, the processes related to nervous system development and to ceramide and sphingosine signaling pathways are particularly important. This is in line with earlier suggestions to use these pathways as therapeutic target in pain. Following identification of the biological processes characterizing hereditary insensitivity to pain, the biological processes were used for a similarity analysis with the functions of = 4,834 database-queried drugs. Using emergent self-organizing maps, a cluster of = 22 drugs was identified sharing important functional features with hereditary insensitivity to pain. Several members of this cluster had been implicated in pain in preclinical experiments. Thus, the present concept of machine-learned knowledge discovery for pain research provides biologically plausible results and seems to be suitable for drug discovery by identifying a narrow choice of repurposing candidates, demonstrating that contemporary machine-learned methods offer innovative approaches to knowledge discovery from available evidence.

摘要

与人类疼痛不敏感因果相关的基因提供了一个独特的分子来源,用于研究疼痛的病理生理学和新型镇痛药的开发。“大数据”可用性的不断提高为慢性疼痛研究带来了新的方法,同时也需要用于数据挖掘和知识发现的新技术。我们使用机器学习将与人类遗传性疼痛不敏感因果相关的约20个基因的知识与数千个基因的功能知识相结合。综合计算分析表明,在这组基因的功能中,与神经系统发育以及神经酰胺和鞘氨醇信号通路相关的过程尤为重要。这与早期将这些通路用作疼痛治疗靶点的建议一致。在确定了表征遗传性疼痛不敏感的生物学过程后,将这些生物学过程与通过数据库查询的4834种药物的功能进行相似性分析。使用新兴自组织映射,鉴定出一组22种药物,它们与遗传性疼痛不敏感具有重要的功能特征。该组中的几种药物在临床前实验中已被证明与疼痛有关。因此,目前用于疼痛研究的机器学习知识发现概念提供了生物学上合理的结果,并且似乎适合通过确定一小部分重新利用的候选药物来进行药物发现,这表明当代机器学习方法为从现有证据中发现知识提供了创新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e8e/5550731/c930f898d704/fnmol-10-00252-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验