Suppr超能文献

[从人类实验性疼痛研究的复杂数据集中生成知识]

[Generating knowledge from complex data sets in human experimental pain research].

作者信息

Lötsch Jörn, Geisslinger Gerd, Walter Carmen

机构信息

Institut für Klinische Pharmakologie, Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Deutschland.

Institutsteil Translationale Medizin und Pharmakologie (TMP), Fraunhofer-Institut für Molekularbiologie und Angewandte Oekologie (IME), Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Deutschland.

出版信息

Schmerz. 2019 Dec;33(6):502-513. doi: 10.1007/s00482-019-00412-5.

Abstract

Pain has a complex pathophysiology that is expressed in multifaceted and heterogeneous clinical phenotypes. This makes research on pain and its treatment a potentially data-rich field as large amounts of complex data are generated. Typical sources of such data are investigations with functional magnetic resonance imaging, complex quantitative sensory testing, next-generation DNA sequencing and functional genomic research approaches, such as those aimed at analgesic drug discovery or repositioning of drugs known from other indications as new analgesics. Extracting information from these big data requires complex data scientific-based methods belonging more to computer science than to statistics. A particular interest is currently focused on machine learning, the methods of which are used for the detection of interesting and biologically meaningful structures in high-dimensional data. Subsequently, classifiers can be created that predict clinical phenotypes from, e.g. clinical or genetic features acquired from subjects. In addition, knowledge discovery in big data accessible in electronic knowledge bases, can be used to generate hypotheses and to exploit the accumulated knowledge about pain for the discovery of new analgesic drugs. This enables so-called data-information-knowledge-wisdom (DIKW) approaches to be followed in pain research. This article highlights current examples from pain research to provide an overview about contemporary data scientific methods used in this field of research.

摘要

疼痛具有复杂的病理生理学,表现为多方面且异质性的临床表型。这使得疼痛及其治疗研究成为一个潜在的数据丰富领域,因为会产生大量复杂数据。此类数据的典型来源包括功能磁共振成像研究、复杂的定量感觉测试、下一代DNA测序以及功能基因组研究方法,例如旨在发现镇痛药或重新定位已知用于其他适应症的药物作为新镇痛药的研究方法。从这些大数据中提取信息需要基于复杂数据科学的方法,这些方法更多地属于计算机科学而非统计学。目前特别关注机器学习,其方法用于在高维数据中检测有趣且具有生物学意义的结构。随后,可以创建分类器,根据从受试者获得的例如临床或遗传特征来预测临床表型。此外,电子知识库中可获取的大数据中的知识发现,可用于生成假设并利用积累的疼痛知识来发现新的镇痛药。这使得在疼痛研究中能够遵循所谓的数据-信息-知识-智慧(DIKW)方法。本文重点介绍疼痛研究的当前实例,以概述该研究领域中使用的当代数据科学方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验