Zarei Sara, Mirtar Ali, Morrow Jarrett D, Castaldi Peter J, Belloni Paula, Hersh Craig P
Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.
San Juan Bautista School of Medicine, Caguas, Puerto Rico.
Chronic Obstr Pulm Dis. 2017 Feb 8;4(2):97-108. doi: 10.15326/jcopdf.4.2.2016.0147.
Chronic obstructive pulmonary disease (COPD) is a heterogeneous disorder. COPD patients may have different clinical features, imaging characteristics and natural history. Multiple studies have investigated heterogeneity using statistical methods such as unsupervised clustering to define different subgroups of COPD based largely on clinical phenotypes. Some studies have performed clustering using genetic data or limited numbers of blood biomarkers. Our primary goal was to use proteomic data to find subtypes of COPD within clinically similar individuals. In the Treatment of Emphysema with a gamma-Selective Retinoid Agonist (TESRA) study, multiplex biomarker panels were run in serum samples collected prior to randomization. After implementing an algorithm to minimize missing values, the dataset included 396 COPD individuals and 87 biomarkers. Using hierarchical clustering, we identified 3 COPD subgroups, containing 267 (67.4%), 104 (26.3%), and 25 (6.3%) individuals, respectively. The third cluster had less emphysema on quantitative analysis of chest computed tomography scans (=0.03) and worse disease-related quality of life based on the St. George's Respiratory Questionnaire (total score cluster 1: 45.6, cluster 2: 45.4, cluster 3: 56.6; =0.01), despite similar levels of lung function impairment (forced expiratory volume in 1 second (49.2%, 49.2%, 48.2 % predicted, respectively). Enrichment analysis showed the biomarkers distinguishing cluster 3 mapped to platelet alpha granule and cell chemotaxis pathways. Thus, we identified a subgroup which has less emphysema but may have greater inflammation, which could be potentially targeted with anti-inflammatory therapies.
慢性阻塞性肺疾病(COPD)是一种异质性疾病。COPD患者可能具有不同的临床特征、影像学特点和自然病史。多项研究已使用无监督聚类等统计方法来研究异质性,以主要基于临床表型定义COPD的不同亚组。一些研究已使用遗传数据或数量有限的血液生物标志物进行聚类。我们的主要目标是利用蛋白质组学数据在临床相似的个体中找到COPD的亚型。在使用γ-选择性类视黄醇激动剂治疗肺气肿(TESRA)研究中,对随机分组前采集的血清样本进行了多重生物标志物检测。在实施一种算法以尽量减少缺失值后,数据集包括396例COPD个体和87种生物标志物。使用层次聚类,我们确定了3个COPD亚组,分别包含267例(67.4%)、104例(26.3%)和25例(6.3%)个体。在胸部计算机断层扫描定量分析中,第三组肺气肿较轻(=0.03),但基于圣乔治呼吸问卷的疾病相关生活质量较差(总分:第1组45.6,第2组45.4,第3组56.6;=0.01),尽管肺功能损害水平相似(第1秒用力呼气量分别为预测值的49.2%、49.2%、48.2%)。富集分析表明,区分第3组的生物标志物映射到血小板α颗粒和细胞趋化途径。因此,我们确定了一个肺气肿较轻但可能炎症更严重的亚组,抗炎治疗可能对其有潜在的靶向作用。