Suppr超能文献

早期慢性阻塞性肺疾病的多组学特征分析

Multi-omics characterization of early chronic obstructive pulmonary disease.

作者信息

Li Bolun, Liu Jiangfeng, Cao Yinghao, Wang Yiyang, Wu Sinan, Hu Huiyuan, Xiao Xingqi, Hu Jiantao, Wang Qian, Wu Junlin, Luo Le, Liu Yong, Tang Qihao, Xing Yanjiang, Zhang Tiantian, Zhou Jinyu, Wang Lin, Yang Juntao, Wang Jing, Wang Chen

机构信息

State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.

State Key Laboratory of Common Mechanism Research for Major Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.

出版信息

Respir Res. 2025 Apr 28;26(1):167. doi: 10.1186/s12931-025-03250-5.

Abstract

Chronic obstructive pulmonary disease (COPD) is projected to become the third leading cause of death globally by 2030, accounting for 71.9% of chronic respiratory diseases cases in 2019. Early COPD (ECOPD) diagnosis heavily relies on clinically monitoring of lung functions, with a strong influence from smoking exposures, which may not align well with disease progression. As such, the GOLD 2022-2024 guidelines emphasize the discovery of biological markers over clinical symptoms for early detection. This study explores the biological characteristics of ECOPD in a cohort of 176 adults from China Pulmonary Health Study, consisting 88 healthy controls (HC) and 88 clinically diagnosed ECOPD, matched for age, gender and smoking history. While lung function tests revealed differences between HC and ECOPD, no significant distinctions were observed in routine blood tests. Proteomics analysis identified 377 plasma proteins common to both groups, with low-intensity proteins driving group-specific differences. Univariable logistic regression and gene set enrichment analysis identified 248 proteins associated with ECOPD, particularly those involved in inflammation process. Validation in an independent cohort confirmed the association of 15 proteins with ECOPD. Metabolomics analysis of the plasma identified 1788 metabolites, 137 of which were found linked to ECOPD. Machine learning models indicated that a multi-omics approach provided the best predication of lung function (R = 0.74), while proteomics alone effectively diagnosed ECOPD (AUC = 0.949). Similarity network fusion and clustering revealed two ECOPD subgroups: one by markers of inflammatory-immune response, and the other by the presence of those related to hemostasis or the vascular smooth muscle function. These findings underscore the potential of multi-omics integration in distinguishing ECOPD subgroups and predicting disease risk.

摘要

慢性阻塞性肺疾病(COPD)预计到2030年将成为全球第三大死因,占2019年慢性呼吸道疾病病例的71.9%。早期慢性阻塞性肺疾病(ECOPD)的诊断严重依赖于肺功能的临床监测,受吸烟暴露的影响很大,这可能与疾病进展不太一致。因此,《慢性阻塞性肺疾病全球倡议》2022 - 2024年指南强调通过生物标志物而非临床症状来进行早期检测。本研究在中国肺部健康研究的176名成年人队列中探索了ECOPD的生物学特征,该队列包括88名健康对照(HC)和88名临床诊断的ECOPD患者,他们在年龄、性别和吸烟史方面相匹配。虽然肺功能测试显示HC和ECOPD之间存在差异,但在常规血液检测中未观察到显著差异。蛋白质组学分析确定了两组共有的377种血浆蛋白,低强度蛋白导致了组间差异。单变量逻辑回归和基因集富集分析确定了248种与ECOPD相关的蛋白,特别是那些参与炎症过程的蛋白。在一个独立队列中的验证证实了15种蛋白与ECOPD的关联。血浆代谢组学分析确定了1788种代谢物,其中137种与ECOPD相关。机器学习模型表明,多组学方法对肺功能的预测效果最佳(R = 0.74),而仅蛋白质组学就能有效诊断ECOPD(AUC = 0.949)。相似性网络融合和聚类揭示了两个ECOPD亚组:一个由炎症免疫反应标志物定义,另一个由与止血或血管平滑肌功能相关的标志物定义。这些发现强调了多组学整合在区分ECOPD亚组和预测疾病风险方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7e4/12039082/601b19680105/12931_2025_3250_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验