Department of Chemistry, Korea Advanced Institute of Science and Technology , Daejeon 34141, Republic of Korea.
Advanced Materials Division, Korea Research Institute of Chemical Technology , 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea.
Nano Lett. 2017 Sep 13;17(9):5688-5694. doi: 10.1021/acs.nanolett.7b02582. Epub 2017 Aug 31.
Semiconductor-metal hybrid nanostructures are one of the best model catalysts for understanding photocatalytic hydrogen generation. To investigate the optimal structure of metal cocatalysts, metal-CdSe-metal nanodumbbells were synthesized with three distinct sets of metal tips, Pt-CdSe-Pt, Au-CdSe-Au, and Au-CdSe-Pt. Photoelectrochemical responses and transient absorption spectra showed that the competition between the charge recombination at the metal-CdSe interface and the water reduction on the metal surface is a detrimental factor for the apparent hydrogen evolution rate. For instance, a large recombination rate (k) at the Pt-CdSe interface limits the quantum yield of hydrogen generation despite a superior water reduction rate (k) on the Pt surface. To suppress the recombination process, Pt was selectively deposited onto the Au tips of Au-CdSe-Au nanodumbbells in which the k was diminished at the Au-CdSe interface, and the large k was maintained on the Pt surface. As a result, the optimal structure of the Pt-coated Au-CdSe-Au nanodumbbells reached a quantum yield of 4.84%. These findings successfully demonstrate that the rational design of a metal cocatalyst and metal-semiconductor interface can additionally enhance the catalytic performance of the photochemical hydrogen generation reactions.
半导体-金属杂化纳米结构是理解光催化制氢的最佳模型催化剂之一。为了研究金属助催化剂的最佳结构,我们用三种不同的金属尖端合成了金属-CdSe-金属纳米哑铃,分别是 Pt-CdSe-Pt、Au-CdSe-Au 和 Au-CdSe-Pt。光电化学响应和瞬态吸收光谱表明,金属-CdSe 界面处的电荷复合与金属表面上水还原之间的竞争是对表观析氢速率有害的因素。例如,尽管 Pt 表面上水还原速率(k)较高,但在 Pt-CdSe 界面处的大复合速率(k)限制了氢生成的量子产率。为了抑制复合过程,Pt 被选择性地沉积在 Au-CdSe-Au 纳米哑铃的 Au 尖端上,其中在 Au-CdSe 界面处的 k 减小,而在 Pt 表面上保持较大的 k。结果,最佳结构的 Pt 涂覆的 Au-CdSe-Au 纳米哑铃达到了 4.84%的量子产率。这些发现成功地证明了金属助催化剂和金属-半导体界面的合理设计可以进一步提高光化学制氢反应的催化性能。