Suppr超能文献

使用定量 CT 指标进行多变量建模可能会提高肺移植后闭塞性细支气管炎综合征诊断的准确性。

Multivariate modeling using quantitative CT metrics may improve accuracy of diagnosis of bronchiolitis obliterans syndrome after lung transplantation.

机构信息

University of Pennsylvania, Philadelphia, PA, USA.

Temple University, Philadelphia, PA, USA.

出版信息

Comput Biol Med. 2017 Oct 1;89:275-281. doi: 10.1016/j.compbiomed.2017.08.016. Epub 2017 Aug 21.

Abstract

BACKGROUND

To assess how quantitative CT (qCT) metrics compare to pulmonary function testing (PFT) and semi-quantitative image scores (SQS) to diagnose bronchiolitis obliterans syndrome (BOS), manifestation of chronic lung allograft dysfunction after lung transplantation (LTx), according to the type of LTx (unilateral or bilateral).

METHODS

Paired inspiratory-expiratory CT scans and PFTs of 176 LTx patients were analyzed retrospectively, and separated into BOS (78) and non-BOS (98) cohorts. SQS were assessed by 2 radiologists and graded (0-3) for features including mosaic attenuation and bronchiectasis. qCT metrics included lung volumes and air trapping volumes. Multivariate logistic regression (MVLR) and support vector machines (SVM) were used for the classification task.

RESULTS

MVLR and SVM models using PFT metrics demonstrated highest accuracy for bilateral LTx (max AUC 0.771), whereas models using qCT metrics-only outperformed models using SQS or PFTs in unilateral LTx (max AUC 0.817), to diagnose BOS. Adding PC (principal components) from qCT on top of PFT improved model diagnostic accuracy for all transplant types.

CONCLUSIONS

Combinations of qCT metrics augment the diagnostic performance of PFTs, are superior to SQS to predict BOS status, and outperform PFTs in the unilateral LTx group. This suggests that latent information on paired volumetric CT may allow early diagnosis of BOS in LTx patients, particularly in unilateral LTx.

摘要

背景

评估定量 CT(qCT) 指标与肺功能测试(PFT)和半定量图像评分(SQS)在诊断肺移植(LTx)后慢性肺移植物功能障碍的闭塞性细支气管炎综合征(BOS)方面的差异,依据 LTx 的类型(单侧或双侧)。

方法

回顾性分析了 176 例 LTx 患者的吸气-呼气 CT 扫描和 PFT ,并将其分为 BOS(78 例)和非 BOS(98 例)队列。由 2 名放射科医生评估 SQS ,并对马赛克衰减和支气管扩张等特征进行分级(0-3)。qCT 指标包括肺容积和气腔滞留容积。采用多变量逻辑回归(MVLR)和支持向量机(SVM)进行分类任务。

结果

使用 PFT 指标的 MVLR 和 SVM 模型在双侧 LTx 中表现出最高的准确性(最大 AUC 为 0.771),而仅使用 qCT 指标的模型在单侧 LTx 中优于使用 SQS 或 PFT 的模型(最大 AUC 为 0.817),以诊断 BOS。在 PFT 之上添加 qCT 的 PC(主成分)可提高所有移植类型的模型诊断准确性。

结论

qCT 指标的组合增强了 PFT 的诊断性能,优于 SQS 预测 BOS 状态,并且在单侧 LTx 组中优于 PFT。这表明配对容积 CT 的潜在信息可能允许在 LTx 患者中更早地诊断 BOS ,尤其是在单侧 LTx 中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验