基质降解性控制 3D 细胞迁移的细胞聚集性。
Matrix degradability controls multicellularity of 3D cell migration.
机构信息
The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
出版信息
Nat Commun. 2017 Aug 29;8(1):371. doi: 10.1038/s41467-017-00418-6.
A major challenge in tissue engineering is the development of materials that can support angiogenesis, wherein endothelial cells from existing vasculature invade the surrounding matrix to form new vascular structures. To identify material properties that impact angiogenesis, here we have developed an in vitro model whereby molded tubular channels inside a synthetic hydrogel are seeded with endothelial cells and subjected to chemokine gradients within a microfluidic device. To accomplish precision molding of hydrogels and successful integration with microfluidics, we developed a class of hydrogels that could be macromolded and micromolded with high shape and size fidelity by eliminating swelling after polymerization. Using this material, we demonstrate that matrix degradability switches three-dimensional endothelial cell invasion between two distinct modes: single-cell migration and the multicellular, strand-like invasion required for angiogenesis. The ability to incorporate these tunable hydrogels into geometrically constrained settings will enable a wide range of previously inaccessible biomedical applications.The fabrication of vascularized 3D tissues requires an understanding of how material properties govern endothelial cell invasion into the surrounding matrix. Here the authors integrate a non-swelling synthetic hydrogel with a microfluidic device to study chemokine gradient-driven angiogenic sprouting and find that matrix degradability modulates the collectivity of cell migration.
组织工程面临的一个主要挑战是开发能够支持血管生成的材料,其中来自现有脉管系统的内皮细胞侵入周围基质以形成新的血管结构。为了确定影响血管生成的材料特性,我们在这里开发了一种体外模型,其中在合成水凝胶内部成型的管状通道中接种内皮细胞,并在微流控设备中施加趋化因子梯度。为了实现水凝胶的精密成型和与微流控的成功集成,我们开发了一类水凝胶,通过消除聚合后的溶胀,可以以高形状和尺寸保真度进行大分子成型和微成型。使用这种材料,我们证明了基质降解性将三维内皮细胞侵入转换为两种不同模式:单细胞迁移和血管生成所需的多细胞、线状侵入。将这些可调谐水凝胶纳入几何受限环境的能力将使广泛的以前无法获得的生物医学应用成为可能。血管化 3D 组织的制造需要了解材料特性如何控制内皮细胞侵入周围基质。在这里,作者将非溶胀的合成水凝胶与微流控设备集成在一起,以研究趋化因子梯度驱动的血管生成发芽,并发现基质降解性调节了细胞迁移的集体性。