Suppr超能文献

脂肪酶在烷基硅烷修饰的磁性纳米粒子上的固定化:烷基链长对酶活性的影响。

Immobilization of lipases on alkyl silane modified magnetic nanoparticles: effect of alkyl chain length on enzyme activity.

机构信息

State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, China.

出版信息

PLoS One. 2012;7(8):e43478. doi: 10.1371/journal.pone.0043478. Epub 2012 Aug 30.

Abstract

BACKGROUND

Biocatalytic processes often require a full recycling of biocatalysts to optimize economic benefits and minimize waste disposal. Immobilization of biocatalysts onto particulate carriers has been widely explored as an option to meet these requirements. However, surface properties often affect the amount of biocatalysts immobilized, their bioactivity and stability, hampering their wide applications. The aim of this work is to explore how immobilization of lipases onto magnetite nanoparticles affects their biocatalytic performance under carefully controlled surface modification.

METHODOLOGY/PRINCIPAL FINDINGS: Magnetite nanoparticles, prepared through a co-precipitation method, were coated with alkyl silanes of different alkyl chain lengths to modulate their surface hydrophobicity. Candida rugosa lipase was then directly immobilized onto the modified nanoparticles through hydrophobic interaction. Enzyme activity was assessed by catalytic hydrolysis of p-nitrophenyl acetate. The activity of immobilized lipases was found to increase with increasing chain length of the alkyl silane. Furthermore, the catalytic activities of lipases immobilized on trimethoxyl octadecyl silane (C18) modified Fe(3)O(4) were a factor of 2 or more than the values reported from other surface immobilized systems. After 7 recycles, the activities of the lipases immobilized on C18 modified nanoparticles retained 65%, indicating significant enhancement of stability as well through hydrophobic interaction. Lipase immobilized magnetic nanoparticles facilitated easy separation and recycling with high activity retaining.

CONCLUSIONS/SIGNIFICANCE: The activity of immobilized lipases increased with increasing alkyl chain length of the alkyl trimethoxy silanes used in the surface modification of magnetite nanoparticles. Lipase stability was also improved through hydrophobic interaction. Alkyl silane modified magnetite nanoparticles are thus highly attractive carriers for enzyme immobilization enabling efficient enzyme recovery and recycling.

摘要

背景

生物催化过程通常需要将生物催化剂完全回收,以优化经济效益并尽量减少废物处理。将生物催化剂固定在颗粒载体上已被广泛探索作为满足这些要求的一种选择。然而,表面性质通常会影响固定的生物催化剂的数量、它们的生物活性和稳定性,从而限制了它们的广泛应用。本工作的目的是探讨在仔细控制表面修饰的情况下,将脂肪酶固定在磁铁矿纳米粒子上如何影响其生物催化性能。

方法/主要发现:通过共沉淀法制备的磁铁矿纳米粒子用不同链长的烷基硅烷进行涂层,以调节其表面疏水性。然后通过疏水相互作用将 Candida rugosa 脂肪酶直接固定在修饰的纳米粒子上。通过对 p-硝基苯乙酸酯的催化水解评估酶活性。发现固定化脂肪酶的活性随烷基硅烷链长的增加而增加。此外,固定在三乙氧基辛基硅烷(C18)修饰的 Fe(3)O(4)上的脂肪酶的催化活性是其他表面固定化系统报道值的 2 倍或更高。经过 7 次循环后,固定在 C18 修饰的纳米粒子上的脂肪酶的活性保留了 65%,表明通过疏水相互作用也显著提高了稳定性。固定化脂肪酶的磁性纳米粒子易于分离和回收,具有高活性保留。

结论/意义:用于修饰磁铁矿纳米粒子的烷基三甲氧基硅烷的烷基链长度增加,固定化脂肪酶的活性增加。通过疏水相互作用也提高了脂肪酶的稳定性。因此,烷基硅烷修饰的磁铁矿纳米粒子是一种很有吸引力的酶固定载体,能够有效地回收和循环使用酶。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e033/3431390/d73ac8532562/pone.0043478.g001.jpg

相似文献

2
Surface modification of magnetite nanoparticles using gluconic acid and their application in immobilized lipase.
Colloids Surf B Biointerfaces. 2012 May 1;93:24-8. doi: 10.1016/j.colsurfb.2011.11.054. Epub 2011 Dec 21.
3
5
Immobilization of Candida antarctica Lipase on Nanomaterials and Investigation of the Enzyme Activity and Enantioselectivity.
Appl Biochem Biotechnol. 2021 Feb;193(2):430-445. doi: 10.1007/s12010-020-03443-2. Epub 2020 Oct 6.
6
Immobilization of lipase on carboxylic acid-modified silica nanoparticles for olive oil glycerolysis.
Bioprocess Biosyst Eng. 2018 Jan;41(1):115-127. doi: 10.1007/s00449-017-1852-5. Epub 2017 Oct 17.
7
Surface Modification of Fe(3)O(4)@SiO(2) Magnetic Nanoparticles for Immobilization of Lipase.
J Nanosci Nanotechnol. 2017 Jan;17(1):370-6. doi: 10.1166/jnn.2017.10964.
8
Encapsulation of lipase using magnetic fluorescent calix[4]arene derivatives; improvement of enzyme activity and stability.
Int J Biol Macromol. 2019 Jul 15;133:1042-1050. doi: 10.1016/j.ijbiomac.2019.04.182. Epub 2019 Apr 28.
10
Biochemical characterization and stability assessment of Rhizopus oryzae lipase covalently immobilized on amino-functionalized magnetic nanoparticles.
Int J Biol Macromol. 2017 Dec;105(Pt 1):300-307. doi: 10.1016/j.ijbiomac.2017.07.035. Epub 2017 Jul 12.

引用本文的文献

2
Surface-coated magnetic nanostructured materials for robust bio-catalysis and biomedical applications-A review.
J Adv Res. 2021 Oct 4;38:157-177. doi: 10.1016/j.jare.2021.09.013. eCollection 2022 May.
5
Nanoparticles as Carriers of Proteins, Peptides and Other Therapeutic Molecules.
Open Life Sci. 2018 Oct 31;13:285-298. doi: 10.1515/biol-2018-0035. eCollection 2018 Jan.
6
Microbial lipases and their industrial applications: a comprehensive review.
Microb Cell Fact. 2020 Aug 26;19(1):169. doi: 10.1186/s12934-020-01428-8.
8
Immobilisation of lipase enzyme onto bacterial magnetosomes for stain removal.
Biotechnol Rep (Amst). 2020 Jan 17;25:e00422. doi: 10.1016/j.btre.2020.e00422. eCollection 2020 Mar.
9
Process optimisation for green synthesis of zero-valent iron nanoparticles using .
IET Nanobiotechnol. 2019 Apr;13(2):160-169. doi: 10.1049/iet-nbt.2018.5040.

本文引用的文献

1
Hydrophobic surface induced activation of Pseudomonas cepacia lipase immobilized into mesoporous silica.
Langmuir. 2011 Oct 4;27(19):12016-24. doi: 10.1021/la202794t. Epub 2011 Sep 7.
2
Immobilization of albumin on aminosilane modified superparamagnetic magnetite nanoparticles and its characterization.
Colloids Surf B Biointerfaces. 2009 Jun 1;71(1):154-9. doi: 10.1016/j.colsurfb.2009.01.021. Epub 2009 Feb 11.
3
4
Surface modification of magnetite nanoparticles using lactobionic acid and their interaction with hepatocytes.
Biomaterials. 2007 Feb;28(4):710-6. doi: 10.1016/j.biomaterials.2006.09.014. Epub 2006 Oct 16.
5
Surface reactions of carbon dioxide at the adsorbed water-iron oxide interface.
J Phys Chem B. 2005 Jun 30;109(25):12227-30. doi: 10.1021/jp051868k.
6
Superparamagnetic nanoparticle-supported enzymatic resolution of racemic carboxylates.
Chem Commun (Camb). 2005 Sep 21(35):4432-4. doi: 10.1039/b504128g. Epub 2005 Aug 11.
8
Direct binding and characterization of lipase onto magnetic nanoparticles.
Biotechnol Prog. 2003 May-Jun;19(3):1095-100. doi: 10.1021/bp025587v.
9
Activity of Candida rugosa lipase immobilized on gamma-Fe2O3 magnetic nanoparticles.
J Am Chem Soc. 2003 Feb 19;125(7):1684-5. doi: 10.1021/ja021223n.
10
Enzymes for chemical synthesis.
Nature. 2001 Jan 11;409(6817):232-40. doi: 10.1038/35051706.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验