Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China.
GMPA, AgroParisTech, INRA, Université Paris-Saclay, 78850, Thiverval-Grignon, France.
Metab Eng. 2019 Sep;55:231-238. doi: 10.1016/j.ymben.2019.08.001. Epub 2019 Aug 3.
As an alternative to in vitro lipase dependent biotransformation and to traditional assembly of pathways in cytoplasm, the present study focused on targeting lipase dependent pathways to a subcellular compartment lipid body (LB), in combination with compartmentalization of associated pathways in other lipid relevant organelles including endoplasmic reticulum (ER) and peroxisome for efficient in vivo biosynthesis of fatty acid methyl esters (FAMEs) and hydrocarbons, in the context of improving Yarrowia lipolytica lipid pool. Through knock in and knock out of key genes involved in triacylglycerols (TAGs) biosynthesis and degradation, the TAGs content was increased to 51.5%, from 7.2% in parent strain. Targeting lipase dependent pathway to LB gave a 10-fold higher FAMEs titer (1028.0 mg/L) compared to cytosolic pathway (102.8 mg/L). Furthermore, simultaneously targeting lipase dependent pathway to LB, ER and peroxisome gave rise to the highest FAMEs titer (1644.8 mg/L). The subcellular compartment engineering strategy was extended to other lipase dependent pathways for fatty alkene and alkane biosynthesis, which resulted in a 14-fold titer enhancement compared to traditional cytosolic pathways. We developed yeast subcellular cell factories by directing lipase dependent pathways towards the TAGs storage organelle LB for efficient biosynthesis of TAG derived chemicals for the first time. The successful exploration of targeting metabolic pathways towards LB centered organelles is expected to promote subcellular compartment engineering for other lipid derived product biosynthesis.
作为体外脂肪酶依赖生物转化和传统细胞质途径组装的替代方法,本研究侧重于将脂肪酶依赖途径靶向到亚细胞隔室脂滴 (LB),同时将相关途径分隔到其他与脂质相关的细胞器中,包括内质网 (ER) 和过氧化物酶体,以在改善解脂耶氏酵母脂质库的情况下,有效地在体内生物合成脂肪酸甲酯 (FAMEs) 和烃类。通过敲入和敲除涉及三酰基甘油 (TAG) 生物合成和降解的关键基因,TAG 含量从亲本菌株的 7.2%增加到 51.5%。将脂肪酶依赖途径靶向 LB 可使 FAMEs 产量提高 10 倍(1028.0mg/L),而细胞质途径仅为 102.8mg/L。此外,同时将脂肪酶依赖途径靶向 LB、ER 和过氧化物酶体可产生最高的 FAMEs 产量(1644.8mg/L)。亚细胞隔室工程策略被扩展到其他脂肪酶依赖途径,用于脂肪酸烯烃和烷烃的生物合成,与传统的细胞质途径相比,产量提高了 14 倍。我们首次通过将脂肪酶依赖途径引导到 TAG 储存细胞器 LB,开发了酵母亚细胞细胞工厂,用于高效生物合成源自 TAG 的化学品。靶向代谢途径到以 LB 为中心的细胞器的成功探索有望促进其他脂质衍生产品生物合成的亚细胞隔室工程。