Lu Zeyu, Shen Qianyi, Liu Lian, Talbo Gert, Speight Robert, Trau Matt, Dumsday Geoff, Howard Christopher B, Vickers Claudia E, Peng Bingyin
ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia.
Eng Microbiol. 2023 Apr 3;3(3):100079. doi: 10.1016/j.engmic.2023.100079. eCollection 2023 Sep.
Hexokinase II (Hxk2) is a master protein in glucose-mediated transcriptional repression signaling pathway. Degrading Hxk2 through an auxin-inducible protein degradation previously doubled sesquiterpene (nerolidol) production at gram-per-liter levels in . Global transcriptomics/proteomics profiles in Hxk2-deficient background are important to understanding genetic and molecular mechanisms for improved nerolidol production and guiding further strain optimization. Here, proteomic responses to Hxk2 depletion are investigated in the yeast strains harboring a promoters-controlled nerolidol synthetic pathway, at the exponential and ethanol growth phases and in -wildtype and backgrounds. Carbon metabolic pathways and amino acid metabolic pathways show diversified responses to Hxk2 depletion and growth on ethanol, including upregulation of alternative carbon catabolism and respiration as well as downregulation of amino acid synthesis. De-repression of genes may contribute to improved nerolidol production in Hxk2-depleted strains. Seventeen transcription factors associated with upregulated genes are enriched. Validating Ash1-mediated repression on the promoter shows the variation on the regulatory effects of different Ash1-binding sites and the synergistic effect of Ash1 and Hxk2-mediated repression. Further validation of individual promoters shows that promoter activities are glucose-dependent in background, but much weaker than those in -wildtype background. In summary, inactivating may relieve glucose repression on respiration and promoters for improved bioproduction under aerobic conditions in . The proteomics profiles provide a better genetics overview for a better metabolic engineering design in backgrounds.
己糖激酶II(Hxk2)是葡萄糖介导的转录抑制信号通路中的一种关键蛋白。通过生长素诱导的蛋白降解来降解Hxk2,此前已使倍半萜(橙花叔醇)在克/升水平上的产量翻倍。在缺乏Hxk2的背景下的全局转录组学/蛋白质组学图谱对于理解提高橙花叔醇产量的遗传和分子机制以及指导进一步的菌株优化非常重要。在此,研究了在指数生长期和乙醇生长阶段,在野生型和特定背景下,携带启动子控制的橙花叔醇合成途径的酵母菌株对Hxk2缺失的蛋白质组学反应。碳代谢途径和氨基酸代谢途径对Hxk2缺失和乙醇生长表现出多样化的反应,包括替代碳分解代谢和呼吸作用的上调以及氨基酸合成的下调。某些基因的去抑制可能有助于提高Hxk2缺失菌株中橙花叔醇的产量。与上调基因相关的17种转录因子得到富集。验证Ash1对特定启动子的抑制作用表明不同Ash1结合位点的调控作用存在差异以及Ash1和Hxk2介导的抑制作用的协同效应。对单个启动子的进一步验证表明,在特定背景下,启动子活性依赖于葡萄糖,但比野生型背景下的活性弱得多。总之,使特定基因失活可能会缓解葡萄糖对呼吸作用和特定启动子的抑制,从而在有氧条件下提高特定菌株的生物生产能力。蛋白质组学图谱为特定背景下更好的代谢工程设计提供了更全面的遗传学概述。