Sanni Samra Joke, Kulahin Nikolaj, Jorgensen Rasmus, Lyngsø Christina, Gammeltoft Steen, Hansen Jakob Lerche
a Department of Obesity and Liver Disease , Novo Nordisk A/S , Maalov , Denmark.
b Department of Clinical Biochemistry , Glostrup Research Institute, Glostrup Hospital , Glostrup , Denmark.
J Recept Signal Transduct Res. 2017 Dec;37(6):590-599. doi: 10.1080/10799893.2017.1369123. Epub 2017 Aug 30.
The angiotensin AT receptor is a seven transmembrane (7TM) receptor, which mediates the regulation of blood pressure. Activation of angiotensin AT receptor may lead to impaired insulin signaling indicating crosstalk between angiotensin AT receptor and insulin receptor signaling pathways. To elucidate the molecular mechanisms behind this crosstalk, we applied the BRET technique to monitor the effect of angiotensin II on the interaction between Rluc tagged insulin receptor and GFP tagged insulin receptor substrates 1, 4, 5 (IRS1, IRS4, IRS5) and Src homology 2 domain-containing protein (Shc). We demonstrate that angiotensin II reduces the interaction between insulin receptor and IRS1 and IRS4, respectively, while the interaction with Shc is unaffected, and this effect is dependent on Gαq activation. Activation of other Gαq-coupled 7TM receptors led to a similar reduction in insulin receptor and IRS4 interactions whereas Gαs- and Gαi-coupled 7TM receptors had no effect. Furthermore, we used a panel of kinase inhibitors to show that angiotensin II engages different pathways when regulating insulin receptor interactions with IRS1 and IRS4. Angiotensin II inhibited the interaction between insulin receptor and IRS1 through activation of ERK1/2, while the interaction between insulin receptor and IRS4 was partially inhibited through protein kinase C dependent mechanisms. We conclude that the crosstalk between angiotensin AT receptor and insulin receptor signaling shows a high degree of specificity, and involves Gαq protein, and activation of distinct kinases. Thus, the BRET technique can be used as a platform for studying molecular mechanisms of crosstalk between insulin receptor and 7TM receptors.
血管紧张素AT受体是一种七跨膜(7TM)受体,介导血压调节。血管紧张素AT受体的激活可能导致胰岛素信号受损,表明血管紧张素AT受体与胰岛素受体信号通路之间存在相互作用。为了阐明这种相互作用背后的分子机制,我们应用生物发光共振能量转移(BRET)技术来监测血管紧张素II对Rluc标记的胰岛素受体与GFP标记的胰岛素受体底物1、4、5(IRS1、IRS4、IRS5)以及含Src同源2结构域蛋白(Shc)之间相互作用的影响。我们证明,血管紧张素II分别降低了胰岛素受体与IRS1和IRS4之间的相互作用,而与Shc的相互作用不受影响,且这种效应依赖于Gαq的激活。其他与Gαq偶联的7TM受体的激活导致胰岛素受体与IRS4之间的相互作用出现类似降低,而与Gαs和Gαi偶联的7TM受体则无此效应。此外,我们使用了一组激酶抑制剂来表明,血管紧张素II在调节胰岛素受体与IRS1和IRS4的相互作用时涉及不同的信号通路。血管紧张素II通过激活ERK1/2抑制胰岛素受体与IRS1之间的相互作用,而胰岛素受体与IRS4之间的相互作用则通过蛋白激酶C依赖性机制受到部分抑制。我们得出结论,血管紧张素AT受体与胰岛素受体信号通路之间的相互作用具有高度特异性,涉及Gαq蛋白以及不同激酶的激活。因此,BRET技术可作为研究胰岛素受体与7TM受体之间相互作用分子机制的平台。