Suppr超能文献

预测 72 小时内急诊复诊。

Predicting 72-hour emergency department revisits.

机构信息

US Department of Veterans Affairs, Stratton VA Medical Center, 113 Holland Ave., Albany, NY 12208, United States.

出版信息

Am J Emerg Med. 2018 Mar;36(3):420-424. doi: 10.1016/j.ajem.2017.08.049. Epub 2017 Aug 25.

Abstract

OBJECTIVES

To develop a predictive model that hospitals or healthcare systems can use to identify patients at high risk of revisiting the ED within 72h so that appropriate interventions can be delivered.

METHODS

This study employed multivariate logistic regression in developing the predictive model. The study data were from four Veterans medical centers in Upstate New York; 21,141 patients in total with ED visits were included in the analysis. Fiscal Year (FY) 2013 data were used to predict revisits in FY 2014. The predictive variables were patient demographics, prior year healthcare utilizations, and comorbidities. To avoid overfitting, we validated the model by the split-sample method. The predictive power of the model is measured by c-statistic.

RESULTS

In the first model using only patient demographics, the c-statistics were 0.55 (CI: 0.52-0.57) and 0.54 (95% CI: 0.51-0.56) for the development and validation samples, respectively. In the second model with prior year utilization added, the c-statistics were 0.70 (95% CI: 0.68-0.72) for both samples. In the final model where comorbidities were added, the c-statistics were 0.74 (CI: 0.72-0.76) and 0.73 (95% CI: 0.71-0.75) for the development and validation samples, respectively.

CONCLUSIONS

Reducing ED revisits not only lowers healthcare cost but also shortens wait time for those who critically need ED care. However, broad intervention for every ED visitor is not feasible given limited resources. In this study, we developed a predictive model that hospitals and healthcare systems can use to identify "frequent flyers" for early interventions to reduce ED revisits.

摘要

目的

开发一种预测模型,使医院或医疗系统能够识别在 72 小时内再次到急诊科就诊的高风险患者,以便提供适当的干预措施。

方法

本研究采用多元逻辑回归方法开发预测模型。研究数据来自纽约州北部的四家退伍军人医疗中心;共纳入 21141 例急诊科就诊患者进行分析。使用 2013 财年的数据预测 2014 财年的复诊情况。预测变量为患者人口统计学特征、前一年的医疗保健利用情况和合并症。为避免过度拟合,我们采用拆分样本法对模型进行验证。模型的预测能力用 C 统计量来衡量。

结果

在仅使用患者人口统计学特征的第一个模型中,开发样本和验证样本的 C 统计量分别为 0.55(95%CI:0.52-0.57)和 0.54(95%CI:0.51-0.56)。在加入前一年利用情况的第二个模型中,两个样本的 C 统计量均为 0.70(95%CI:0.68-0.72)。在加入合并症的最终模型中,开发样本和验证样本的 C 统计量分别为 0.74(95%CI:0.72-0.76)和 0.73(95%CI:0.71-0.75)。

结论

降低急诊科复诊率不仅可以降低医疗成本,还可以缩短那些急需急诊科护理的患者的等待时间。然而,鉴于有限的资源,对每个急诊科就诊者进行广泛的干预是不可行的。在这项研究中,我们开发了一种预测模型,医院和医疗系统可以使用该模型来识别“常客”,以便进行早期干预,减少急诊科复诊。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验