Suppr超能文献

利用健康信息交换数据预测癫痫患者频繁急诊就诊情况。

Predicting frequent ED use by people with epilepsy with health information exchange data.

作者信息

Grinspan Zachary M, Shapiro Jason S, Abramson Erika L, Hooker Giles, Kaushal Rainu, Kern Lisa M

机构信息

From the Departments of Healthcare Research and Policy (Z.M.G., E.L.A., G.H., R.K.), Pediatrics (Z.M.G., E.L.A., R.K.), and Medicine (R.K., L.M.K.), and Center for Healthcare Informatics and Policy (Z.M.G., E.L.A., G.H., R.K., L.M.K.), Weill Cornell Medical College, New York; New York Presbyterian Hospital (Z.M.G., E.L.A., R.K., L.M.K.); Department of Emergency Medicine (J.S.S.), Mount Sinai School of Medicine, New York; Health Information Technology Evaluation Collaborative (E.L.A., R.K., L.M.K.), New York; and Departments of Statistical Science (G.H.) and Biological Statistics and Computational Biology (G.H.), Cornell University, Ithaca, NY.

出版信息

Neurology. 2015 Sep 22;85(12):1031-8. doi: 10.1212/WNL.0000000000001944. Epub 2015 Aug 26.

Abstract

OBJECTIVES

To describe (1) the predictability of frequent emergency department (ED) use (a marker of inadequate disease control and/or poor access to care), and (2) the demographics, comorbidities, and use of health services of frequent ED users, among people with epilepsy.

METHODS

We obtained demographics, comorbidities, and 2 years of encounter data for 8,041 people with epilepsy from a health information exchange in New York City. Using a retrospective cohort design, we explored bivariate relationships between baseline characteristics (year 1) and subsequent frequent ED use (year 2). We then built, evaluated, and compared predictive models to identify frequent ED users (≥4 visits year 2), using multiple techniques (logistic regression, lasso, elastic net, CART [classification and regression trees], Random Forests, AdaBoost, support vector machines). We selected a final model based on performance and simplicity.

RESULTS

People with epilepsy who, in year 1, were adults (rather than children or seniors), male, Manhattan residents, frequent users of health services, users of multiple health systems, or had medical, neurologic, or psychiatric comorbidities, were more likely to frequently use the ED in year 2. Predictive techniques identified frequent ED visitors with good positive predictive value (approximately 70%) but poor sensitivity (approximately 20%). A simple strategy, selecting individuals with 11+ ED visits in year 1, performed as well as more sophisticated models.

CONCLUSIONS

People with epilepsy with 11+ ED visits in a year are at highest risk of continued frequent ED use and may benefit from targeted intervention to avoid preventable ED visits. Future work should focus on improving the sensitivity of predictions.

摘要

目的

描述(1)频繁使用急诊科(ED)(疾病控制不佳和/或获得医疗服务不便的一个指标)的可预测性,以及(2)癫痫患者中频繁使用急诊科者的人口统计学特征、合并症和医疗服务使用情况。

方法

我们从纽约市的一个健康信息交换平台获取了8041名癫痫患者的人口统计学特征、合并症以及两年的就诊数据。采用回顾性队列设计,我们探讨了基线特征(第1年)与随后频繁使用急诊科(第2年)之间的双变量关系。然后,我们构建、评估并比较了预测模型,以识别频繁使用急诊科者(第2年≥4次就诊),使用了多种技术(逻辑回归、套索回归、弹性网络、分类与回归树、随机森林、自适应增强、支持向量机)。我们根据性能和简易性选择了最终模型。

结果

在第1年为成年人(而非儿童或老年人)、男性、曼哈顿居民、频繁使用医疗服务者、使用多个医疗系统者或患有内科、神经科或精神科合并症的癫痫患者,在第2年更有可能频繁使用急诊科。预测技术识别出频繁就诊的急诊科患者具有良好的阳性预测值(约70%)但敏感性较差(约20%)。一种简单的策略,即选择第1年有11次以上急诊科就诊的个体,其表现与更复杂的模型相当。

结论

一年内有11次以上急诊科就诊的癫痫患者持续频繁使用急诊科的风险最高,可能受益于有针对性的干预措施以避免可预防的急诊科就诊。未来的工作应侧重于提高预测的敏感性。

相似文献

4
Characteristics of frequent users of emergency departments.急诊科频繁使用者的特征。
Ann Emerg Med. 2006 Jul;48(1):1-8. doi: 10.1016/j.annemergmed.2005.12.030. Epub 2006 Mar 30.

引用本文的文献

6
Decreasing Emergency Department Visits for Children With Epilepsy.减少癫痫患儿的急诊就诊次数。
Neurol Clin Pract. 2021 Oct;11(5):413-419. doi: 10.1212/CPJ.0000000000001109.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验